Matches in SemOpenAlex for { <https://semopenalex.org/work/W4210588488> ?p ?o ?g. }
- W4210588488 endingPage "293" @default.
- W4210588488 startingPage "276" @default.
- W4210588488 abstract "Accurate assignment of protein function from sequence remains a fascinating and difficult challenge. The periplasmic-binding protein (PBP) superfamily present an interesting case of function prediction because they are both ubiquitous in prokaryotes and tend to diversify through gene duplication explosions that can lead to large numbers of paralogs in a genome. An engineered version of the moderately thermostable glucose-binding PBP from Escherichia coli has been used successfully as a reagentless fluorescent biosensor both in vitro and in vivo. To develop more robust sensors that meet the challenges of real-world applications, we report the discovery of thermostable homologues that retain a glucose-mediated conformationally coupled fluorescence response. Accurately identifying a glucose-binding PBP homologue among closely related paralogs is challenging. We demonstrate that a structure-based method that filters sequences by residues that bind glucose in an archetype structure is highly effective. Using fully sequenced bacterial genomes, we found that this filter reduced high paralog numbers to single hits in a genome, consistent with the accurate separation of glucose binding from other functions. We expressed engineered proteins for eight homologues, chosen to represent different degrees of sequence identity, and tested their glucose-mediated fluorescence responses. We accurately predicted the presence of glucose binding down to 31% sequence identity. We have also successfully identified suitable candidates for next-generation robust, fluorescent glucose sensors." @default.
- W4210588488 created "2022-02-08" @default.
- W4210588488 creator A5055422020 @default.
- W4210588488 creator A5074445091 @default.
- W4210588488 date "2022-01-27" @default.
- W4210588488 modified "2023-10-13" @default.
- W4210588488 title "Discovery of Thermostable, Fluorescently Responsive Glucose Biosensors by Structure-Assisted Function Extrapolation" @default.
- W4210588488 cites W1487808465 @default.
- W4210588488 cites W1488676583 @default.
- W4210588488 cites W1508885706 @default.
- W4210588488 cites W1594147709 @default.
- W4210588488 cites W1966543898 @default.
- W4210588488 cites W1968439657 @default.
- W4210588488 cites W1968903270 @default.
- W4210588488 cites W1969540020 @default.
- W4210588488 cites W1972784441 @default.
- W4210588488 cites W1975440926 @default.
- W4210588488 cites W1985075907 @default.
- W4210588488 cites W1993950752 @default.
- W4210588488 cites W1994905834 @default.
- W4210588488 cites W1996195231 @default.
- W4210588488 cites W2003621313 @default.
- W4210588488 cites W2003788979 @default.
- W4210588488 cites W2005986251 @default.
- W4210588488 cites W2018584517 @default.
- W4210588488 cites W2021224688 @default.
- W4210588488 cites W2022708539 @default.
- W4210588488 cites W2025912075 @default.
- W4210588488 cites W2026013887 @default.
- W4210588488 cites W2028251960 @default.
- W4210588488 cites W2030503112 @default.
- W4210588488 cites W2038055857 @default.
- W4210588488 cites W2052044284 @default.
- W4210588488 cites W2052074731 @default.
- W4210588488 cites W2054931962 @default.
- W4210588488 cites W2055043387 @default.
- W4210588488 cites W2056014433 @default.
- W4210588488 cites W2056125201 @default.
- W4210588488 cites W2061562898 @default.
- W4210588488 cites W2073489889 @default.
- W4210588488 cites W2076709958 @default.
- W4210588488 cites W2079029484 @default.
- W4210588488 cites W2079663118 @default.
- W4210588488 cites W2080960105 @default.
- W4210588488 cites W2094201044 @default.
- W4210588488 cites W2095110809 @default.
- W4210588488 cites W2095724872 @default.
- W4210588488 cites W2097166370 @default.
- W4210588488 cites W2097754949 @default.
- W4210588488 cites W2100320834 @default.
- W4210588488 cites W2101220662 @default.
- W4210588488 cites W2101803445 @default.
- W4210588488 cites W2106441863 @default.
- W4210588488 cites W2116128404 @default.
- W4210588488 cites W2117696831 @default.
- W4210588488 cites W2121540062 @default.
- W4210588488 cites W2123858481 @default.
- W4210588488 cites W2126383924 @default.
- W4210588488 cites W2127188158 @default.
- W4210588488 cites W2127322768 @default.
- W4210588488 cites W2131693592 @default.
- W4210588488 cites W2145100181 @default.
- W4210588488 cites W2147533449 @default.
- W4210588488 cites W2149348072 @default.
- W4210588488 cites W2156440952 @default.
- W4210588488 cites W2160769697 @default.
- W4210588488 cites W2168660051 @default.
- W4210588488 cites W2169086725 @default.
- W4210588488 cites W2170771823 @default.
- W4210588488 cites W2274710689 @default.
- W4210588488 cites W2316320846 @default.
- W4210588488 cites W2334659610 @default.
- W4210588488 cites W2394551978 @default.
- W4210588488 cites W2419687738 @default.
- W4210588488 cites W2528162531 @default.
- W4210588488 cites W2554448368 @default.
- W4210588488 cites W2564488922 @default.
- W4210588488 cites W2576748204 @default.
- W4210588488 cites W2800667109 @default.
- W4210588488 cites W2899709621 @default.
- W4210588488 cites W2980333214 @default.
- W4210588488 cites W2998778611 @default.
- W4210588488 cites W3009604414 @default.
- W4210588488 cites W3085632785 @default.
- W4210588488 cites W3134898844 @default.
- W4210588488 doi "https://doi.org/10.1021/acs.biochem.1c00738" @default.
- W4210588488 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35084821" @default.
- W4210588488 hasPublicationYear "2022" @default.
- W4210588488 type Work @default.
- W4210588488 citedByCount "1" @default.
- W4210588488 countsByYear W42105884882023 @default.
- W4210588488 crossrefType "journal-article" @default.
- W4210588488 hasAuthorship W4210588488A5055422020 @default.
- W4210588488 hasAuthorship W4210588488A5074445091 @default.
- W4210588488 hasConcept C104317684 @default.
- W4210588488 hasConcept C14036430 @default.
- W4210588488 hasConcept C141231307 @default.
- W4210588488 hasConcept C201663137 @default.