Matches in SemOpenAlex for { <https://semopenalex.org/work/W4210588592> ?p ?o ?g. }
- W4210588592 endingPage "1458" @default.
- W4210588592 startingPage "1439" @default.
- W4210588592 abstract "With current economic growth and consumption trends projected to bring about a precipitous and rapid rise of the global temperature, the world stands at a crossroads with regards to climate change. The rate at which greenhouse gas emissions from fossil fuels, industry, and land-use is curtailed over the next decade will determine the trajectory of global warming for the rest of the century. It is increasingly apparent that far-reaching decarbonization of the transportation infrastructure will need to be supplemented by extensive carbon capture, storage, and utilization. Taking a leaf from Nature’s playbook, photocatalytic architectures that can utilize water or CO2 in conjunction with energy harvested from sunlight and store it in the form of energy-dense chemical bonds represent an attractive proposition. Harnessing solar irradiance, through solar energy conversion involving photovoltaics, as well as the photocatalytic generation of solar fuels, and the photocatalytic reduction of CO2 have emerged as urgent imperatives for the energy transition. Functional photocatalysts must be capable of efficiently absorbing sunlight, effectively separating electron─hole pairs, and ensuring they are delivered at appropriate potentials to catalytic sites to mediate redox reactions. Such photocatalytic architectures must further direct redox events down specific pathways to yield desired products, and ensure the transport of reactants between catalytic sites; all with high efficiency and minimal degradation. In this Perspective, we describe a palette of heterostructures designed to promote robust and efficient direct solar-driven water splitting and CO2 reduction. The heterostructures comprise MxV2O5 or MxMy′V2O5, where M is a p-block cation, M′ is an s-, p-, or d-block cation, and V2O5 represents one of multiple polymorphs of this composition interfaced with semiconductor quantum dots (QDs, binary or ternary II–VI or III–V QDs). The stereochemically active 5/6s2 electron lone pairs of p-block cations in MxV2O5 give rise to filled midgap electronic states that reside above the O 2p-derived valence band. Within heterostructures, the photoexcitation of QDs results in the transfer of holes to the midgap states of MxV2O5 or MxMy′V2O5 on subpicosecond time scales. Ultrafast charge separation minimizes the photoanodic corrosion of QDs, which has historically been a major impediment to their use in photocatalysis, and enables charge transport and the subsequent redox reactions underpinning photocatalysis to compete with electron–hole recombination. The energy positioning and dispersion of lone pair states is tunable through multiple chemical and compositional levers accessible across the palette of MxV2O5 or MxMy′V2O5 compounds: choice of lone-pair cation M and its stoichiometry x, atomic connectivity of V2O5 polymorphs, cointercalation of M′ cations in “quaternary” vanadium oxide bronzes, anionic substitution, and alternative lone pair vanadate frameworks with altogether different compositions and lattice structures. Design principles for understanding the nature of lone pair states are discussed with reference to hard X-ray photoemission, crystal orbital Hamiltonian population analyses, and spectroelectrochemical signatures. The dimensions, composition, and doping of QDs along with interfacial structure afford additional levers for heterostructure integration, enabling tuning of thermodynamic energy offsets and charge-transfer dynamics, which have been systematically optimized across several generations of heterostructures to improve photocatalytic performance. Synthetic strategies to prepare new lone-pair MxV2O5 or MxMy′V2O5 compounds and their integration within heterostructures are described. Given the large number of variables, we also discuss prospects for the applicability of machine learning and high-throughput synthesis to tackle high-dimensional materials design problems." @default.
- W4210588592 created "2022-02-08" @default.
- W4210588592 creator A5002709382 @default.
- W4210588592 creator A5024420178 @default.
- W4210588592 creator A5026266575 @default.
- W4210588592 creator A5033121905 @default.
- W4210588592 creator A5041353378 @default.
- W4210588592 creator A5064217619 @default.
- W4210588592 creator A5064507691 @default.
- W4210588592 creator A5066523990 @default.
- W4210588592 creator A5069022082 @default.
- W4210588592 creator A5071137754 @default.
- W4210588592 creator A5083176258 @default.
- W4210588592 creator A5087447793 @default.
- W4210588592 date "2022-01-31" @default.
- W4210588592 modified "2023-10-16" @default.
- W4210588592 title "Lone but Not Alone: Precise Positioning of Lone Pairs for the Design of Photocatalytic Architectures" @default.
- W4210588592 cites W1576843582 @default.
- W4210588592 cites W1581797336 @default.
- W4210588592 cites W1965098246 @default.
- W4210588592 cites W1965381618 @default.
- W4210588592 cites W1969340742 @default.
- W4210588592 cites W1971154735 @default.
- W4210588592 cites W1977763630 @default.
- W4210588592 cites W1985967787 @default.
- W4210588592 cites W1987833710 @default.
- W4210588592 cites W1989089352 @default.
- W4210588592 cites W1990762624 @default.
- W4210588592 cites W1994392684 @default.
- W4210588592 cites W1999271897 @default.
- W4210588592 cites W1999519362 @default.
- W4210588592 cites W2003092971 @default.
- W4210588592 cites W2003534455 @default.
- W4210588592 cites W2008686504 @default.
- W4210588592 cites W2009184047 @default.
- W4210588592 cites W2014695509 @default.
- W4210588592 cites W2017699992 @default.
- W4210588592 cites W2017908909 @default.
- W4210588592 cites W2018645436 @default.
- W4210588592 cites W2024078407 @default.
- W4210588592 cites W2026385684 @default.
- W4210588592 cites W2026466565 @default.
- W4210588592 cites W2036232104 @default.
- W4210588592 cites W2040880138 @default.
- W4210588592 cites W2051796629 @default.
- W4210588592 cites W2052197286 @default.
- W4210588592 cites W2054528246 @default.
- W4210588592 cites W2057039022 @default.
- W4210588592 cites W2068534862 @default.
- W4210588592 cites W2072758315 @default.
- W4210588592 cites W2084942004 @default.
- W4210588592 cites W2096867388 @default.
- W4210588592 cites W2102880508 @default.
- W4210588592 cites W2103800014 @default.
- W4210588592 cites W2105194547 @default.
- W4210588592 cites W2115168239 @default.
- W4210588592 cites W2123977219 @default.
- W4210588592 cites W2126586778 @default.
- W4210588592 cites W2137091411 @default.
- W4210588592 cites W2139891870 @default.
- W4210588592 cites W2153453329 @default.
- W4210588592 cites W2153497062 @default.
- W4210588592 cites W2199304650 @default.
- W4210588592 cites W2285838863 @default.
- W4210588592 cites W2288063674 @default.
- W4210588592 cites W2312968810 @default.
- W4210588592 cites W2315953847 @default.
- W4210588592 cites W2317060131 @default.
- W4210588592 cites W2330437937 @default.
- W4210588592 cites W2331135227 @default.
- W4210588592 cites W2332211943 @default.
- W4210588592 cites W2402366634 @default.
- W4210588592 cites W2483928127 @default.
- W4210588592 cites W2507772826 @default.
- W4210588592 cites W2551323975 @default.
- W4210588592 cites W2560067562 @default.
- W4210588592 cites W2594617992 @default.
- W4210588592 cites W2602804263 @default.
- W4210588592 cites W2604170470 @default.
- W4210588592 cites W2610603790 @default.
- W4210588592 cites W2625281796 @default.
- W4210588592 cites W2625779298 @default.
- W4210588592 cites W2752487915 @default.
- W4210588592 cites W2761941514 @default.
- W4210588592 cites W2782051377 @default.
- W4210588592 cites W2789992871 @default.
- W4210588592 cites W2792912180 @default.
- W4210588592 cites W2793942283 @default.
- W4210588592 cites W2853985035 @default.
- W4210588592 cites W2887778059 @default.
- W4210588592 cites W2896375080 @default.
- W4210588592 cites W2899312093 @default.
- W4210588592 cites W2899582564 @default.
- W4210588592 cites W2904634505 @default.
- W4210588592 cites W2911982651 @default.
- W4210588592 cites W2912500684 @default.
- W4210588592 cites W2913549004 @default.
- W4210588592 cites W2949510234 @default.