Matches in SemOpenAlex for { <https://semopenalex.org/work/W4210592912> ?p ?o ?g. }
- W4210592912 endingPage "1621" @default.
- W4210592912 startingPage "1609" @default.
- W4210592912 abstract "ABSTRACT Gravitational acceleration fields can be deduced from the collisionless Boltzmann equation, once the distribution function is known. This can be constructed via the method of normalizing flows from data sets of the positions and velocities of stars. Here, we consider application of this technique to the solar neighbourhood. We construct mock data from a linear superposition of multiple ‘quasi-isothermal’ distribution functions, representing stellar populations in the equilibrium Milky Way disc. We show that given a mock data set comprising a million stars within 1 kpc of the Sun, the underlying acceleration field can be measured with excellent, sub-per cent level accuracy, even in the face of realistic errors and missing line-of-sight velocities. The effects of disequilibrium can lead to bias in the inferred acceleration field. This can be diagnosed by the presence of a phase space spiral, which can be extracted simply and cleanly from the learned distribution function. We carry out a comparison with two other popular methods of finding the local acceleration field (Jeans analysis and 1D distribution function fitting). We show our method most accurately measures accelerations from a given mock data set, particularly in the presence of disequilibria." @default.
- W4210592912 created "2022-02-08" @default.
- W4210592912 creator A5011405565 @default.
- W4210592912 creator A5032906309 @default.
- W4210592912 creator A5040852646 @default.
- W4210592912 creator A5085187476 @default.
- W4210592912 date "2022-01-28" @default.
- W4210592912 modified "2023-10-14" @default.
- W4210592912 title "Charting galactic accelerations – II. How to ‘learn’ accelerations in the solar neighbourhood" @default.
- W4210592912 cites W1631788275 @default.
- W4210592912 cites W1990148897 @default.
- W4210592912 cites W2005981576 @default.
- W4210592912 cites W2063566074 @default.
- W4210592912 cites W2121480729 @default.
- W4210592912 cites W2529808249 @default.
- W4210592912 cites W2751550786 @default.
- W4210592912 cites W2767766697 @default.
- W4210592912 cites W2770329137 @default.
- W4210592912 cites W2780502734 @default.
- W4210592912 cites W2885165999 @default.
- W4210592912 cites W2890840461 @default.
- W4210592912 cites W2900995394 @default.
- W4210592912 cites W2904091874 @default.
- W4210592912 cites W2905456205 @default.
- W4210592912 cites W2912242616 @default.
- W4210592912 cites W2938416494 @default.
- W4210592912 cites W2992005611 @default.
- W4210592912 cites W3026667481 @default.
- W4210592912 cites W3041609302 @default.
- W4210592912 cites W3083130550 @default.
- W4210592912 cites W3097285481 @default.
- W4210592912 cites W3100468640 @default.
- W4210592912 cites W3101575738 @default.
- W4210592912 cites W3101932448 @default.
- W4210592912 cites W3102014803 @default.
- W4210592912 cites W3102294025 @default.
- W4210592912 cites W3103280499 @default.
- W4210592912 cites W3104171127 @default.
- W4210592912 cites W3105739987 @default.
- W4210592912 cites W3111394822 @default.
- W4210592912 cites W3121939592 @default.
- W4210592912 cites W3122363063 @default.
- W4210592912 cites W3123882605 @default.
- W4210592912 cites W3125922941 @default.
- W4210592912 cites W3127326697 @default.
- W4210592912 cites W3130433390 @default.
- W4210592912 cites W3166922675 @default.
- W4210592912 cites W3168499560 @default.
- W4210592912 cites W3176639868 @default.
- W4210592912 cites W3198488483 @default.
- W4210592912 cites W3199896910 @default.
- W4210592912 cites W3213938683 @default.
- W4210592912 cites W3217026872 @default.
- W4210592912 cites W4213259675 @default.
- W4210592912 cites W4289256238 @default.
- W4210592912 cites W4296295595 @default.
- W4210592912 doi "https://doi.org/10.1093/mnras/stac153" @default.
- W4210592912 hasPublicationYear "2022" @default.
- W4210592912 type Work @default.
- W4210592912 citedByCount "4" @default.
- W4210592912 countsByYear W42105929122022 @default.
- W4210592912 countsByYear W42105929122023 @default.
- W4210592912 crossrefType "journal-article" @default.
- W4210592912 hasAuthorship W4210592912A5011405565 @default.
- W4210592912 hasAuthorship W4210592912A5032906309 @default.
- W4210592912 hasAuthorship W4210592912A5040852646 @default.
- W4210592912 hasAuthorship W4210592912A5085187476 @default.
- W4210592912 hasBestOaLocation W42105929121 @default.
- W4210592912 hasConcept C117896860 @default.
- W4210592912 hasConcept C121332964 @default.
- W4210592912 hasConcept C150846664 @default.
- W4210592912 hasConcept C186603090 @default.
- W4210592912 hasConcept C27753989 @default.
- W4210592912 hasConcept C44870925 @default.
- W4210592912 hasConcept C555520305 @default.
- W4210592912 hasConcept C62520636 @default.
- W4210592912 hasConcept C74650414 @default.
- W4210592912 hasConceptScore W4210592912C117896860 @default.
- W4210592912 hasConceptScore W4210592912C121332964 @default.
- W4210592912 hasConceptScore W4210592912C150846664 @default.
- W4210592912 hasConceptScore W4210592912C186603090 @default.
- W4210592912 hasConceptScore W4210592912C27753989 @default.
- W4210592912 hasConceptScore W4210592912C44870925 @default.
- W4210592912 hasConceptScore W4210592912C555520305 @default.
- W4210592912 hasConceptScore W4210592912C62520636 @default.
- W4210592912 hasConceptScore W4210592912C74650414 @default.
- W4210592912 hasFunder F4320319993 @default.
- W4210592912 hasIssue "2" @default.
- W4210592912 hasLocation W42105929121 @default.
- W4210592912 hasLocation W42105929122 @default.
- W4210592912 hasLocation W42105929123 @default.
- W4210592912 hasLocation W42105929124 @default.
- W4210592912 hasOpenAccess W4210592912 @default.
- W4210592912 hasPrimaryLocation W42105929121 @default.
- W4210592912 hasRelatedWork W2008086601 @default.
- W4210592912 hasRelatedWork W2010133960 @default.
- W4210592912 hasRelatedWork W2050942819 @default.
- W4210592912 hasRelatedWork W2074908409 @default.