Matches in SemOpenAlex for { <https://semopenalex.org/work/W4210598167> ?p ?o ?g. }
- W4210598167 endingPage "102696" @default.
- W4210598167 startingPage "102696" @default.
- W4210598167 abstract "Drainage pattern recognition (DPR) is a classic and challenging problem in hydrographic system analysis, topographical knowledge mining, and map generalization. An outstanding issue for traditional DPR methods is that the rules used to extract patterns based on certain geometric measures are limited, not accessing the effects of manual recognition. In this study, a graph convolutional network (GCN) was introduced for DPR. First, a dual graph of drainage was built based on the channel connection and hierarchical structure after constructing typical sample data. Second, its features were extracted as inputs of the GCN from three scales, namely, global unity at a macroscale, hierarchical connectivity at a mesoscale, and local equilibrium at a microscale. Finally, the model architecture based on the GCN was designed for DPR. Typical pattern samples (i.e. dendritic, distributary, parallel, skeleton, and rectangular drainage) from OpenStreetMap and USGS were used to implement the training and testing of the model, respectively. The results show that our approach outperforms other machine learning methods, including convolutional neural network, with an accuracy of 85.0%. In summary, the GCN has considerable potential for DPR and a wide scope for further improvement." @default.
- W4210598167 created "2022-02-08" @default.
- W4210598167 creator A5019205311 @default.
- W4210598167 creator A5029956180 @default.
- W4210598167 creator A5056961387 @default.
- W4210598167 creator A5081235198 @default.
- W4210598167 creator A5082266707 @default.
- W4210598167 date "2022-03-01" @default.
- W4210598167 modified "2023-10-14" @default.
- W4210598167 title "A recognition method for drainage patterns using a graph convolutional network" @default.
- W4210598167 cites W1986118217 @default.
- W4210598167 cites W1991699684 @default.
- W4210598167 cites W1993284672 @default.
- W4210598167 cites W2010568380 @default.
- W4210598167 cites W2020114319 @default.
- W4210598167 cites W2024404280 @default.
- W4210598167 cites W2158787690 @default.
- W4210598167 cites W2161053941 @default.
- W4210598167 cites W2301534275 @default.
- W4210598167 cites W2765123421 @default.
- W4210598167 cites W2770429219 @default.
- W4210598167 cites W2804427116 @default.
- W4210598167 cites W2899944658 @default.
- W4210598167 cites W2913323966 @default.
- W4210598167 cites W2920509021 @default.
- W4210598167 cites W2920964209 @default.
- W4210598167 cites W2944925181 @default.
- W4210598167 cites W2979363529 @default.
- W4210598167 cites W2999301586 @default.
- W4210598167 cites W3018456097 @default.
- W4210598167 cites W3034407514 @default.
- W4210598167 cites W3103458544 @default.
- W4210598167 cites W3111011822 @default.
- W4210598167 cites W3115648857 @default.
- W4210598167 cites W3133844141 @default.
- W4210598167 cites W3152838014 @default.
- W4210598167 cites W2765912827 @default.
- W4210598167 doi "https://doi.org/10.1016/j.jag.2022.102696" @default.
- W4210598167 hasPublicationYear "2022" @default.
- W4210598167 type Work @default.
- W4210598167 citedByCount "11" @default.
- W4210598167 countsByYear W42105981672022 @default.
- W4210598167 countsByYear W42105981672023 @default.
- W4210598167 crossrefType "journal-article" @default.
- W4210598167 hasAuthorship W4210598167A5019205311 @default.
- W4210598167 hasAuthorship W4210598167A5029956180 @default.
- W4210598167 hasAuthorship W4210598167A5056961387 @default.
- W4210598167 hasAuthorship W4210598167A5081235198 @default.
- W4210598167 hasAuthorship W4210598167A5082266707 @default.
- W4210598167 hasBestOaLocation W42105981671 @default.
- W4210598167 hasConcept C119857082 @default.
- W4210598167 hasConcept C124101348 @default.
- W4210598167 hasConcept C132525143 @default.
- W4210598167 hasConcept C134306372 @default.
- W4210598167 hasConcept C145420912 @default.
- W4210598167 hasConcept C153180895 @default.
- W4210598167 hasConcept C154945302 @default.
- W4210598167 hasConcept C177148314 @default.
- W4210598167 hasConcept C179428855 @default.
- W4210598167 hasConcept C18903297 @default.
- W4210598167 hasConcept C2984342911 @default.
- W4210598167 hasConcept C33923547 @default.
- W4210598167 hasConcept C41008148 @default.
- W4210598167 hasConcept C67592535 @default.
- W4210598167 hasConcept C80444323 @default.
- W4210598167 hasConcept C81363708 @default.
- W4210598167 hasConcept C86803240 @default.
- W4210598167 hasConceptScore W4210598167C119857082 @default.
- W4210598167 hasConceptScore W4210598167C124101348 @default.
- W4210598167 hasConceptScore W4210598167C132525143 @default.
- W4210598167 hasConceptScore W4210598167C134306372 @default.
- W4210598167 hasConceptScore W4210598167C145420912 @default.
- W4210598167 hasConceptScore W4210598167C153180895 @default.
- W4210598167 hasConceptScore W4210598167C154945302 @default.
- W4210598167 hasConceptScore W4210598167C177148314 @default.
- W4210598167 hasConceptScore W4210598167C179428855 @default.
- W4210598167 hasConceptScore W4210598167C18903297 @default.
- W4210598167 hasConceptScore W4210598167C2984342911 @default.
- W4210598167 hasConceptScore W4210598167C33923547 @default.
- W4210598167 hasConceptScore W4210598167C41008148 @default.
- W4210598167 hasConceptScore W4210598167C67592535 @default.
- W4210598167 hasConceptScore W4210598167C80444323 @default.
- W4210598167 hasConceptScore W4210598167C81363708 @default.
- W4210598167 hasConceptScore W4210598167C86803240 @default.
- W4210598167 hasFunder F4320321001 @default.
- W4210598167 hasLocation W42105981671 @default.
- W4210598167 hasOpenAccess W4210598167 @default.
- W4210598167 hasPrimaryLocation W42105981671 @default.
- W4210598167 hasRelatedWork W2521062615 @default.
- W4210598167 hasRelatedWork W2767651786 @default.
- W4210598167 hasRelatedWork W2912288872 @default.
- W4210598167 hasRelatedWork W2961085424 @default.
- W4210598167 hasRelatedWork W3021430260 @default.
- W4210598167 hasRelatedWork W3027997911 @default.
- W4210598167 hasRelatedWork W3181746755 @default.
- W4210598167 hasRelatedWork W4287776258 @default.
- W4210598167 hasRelatedWork W4306674287 @default.
- W4210598167 hasRelatedWork W4379034774 @default.