Matches in SemOpenAlex for { <https://semopenalex.org/work/W4210601013> ?p ?o ?g. }
Showing items 1 to 63 of
63
with 100 items per page.
- W4210601013 endingPage "50" @default.
- W4210601013 startingPage "45" @default.
- W4210601013 abstract "AbstractDue to the accelerated activity in e-commerce especially since the COVID-19 outbreak, the congestion in the transportation systems is continually increasing, which affects on-time delivery of regular parcels and groceries. An important constraint is the fact that a given number of delivery drivers have a limited amount of time and daily capacity, leading to the need for effective capacity planning. In this paper, we employ a Gaussian Process Regression (GPR) approach to predict the daily delivery capacity of a fleet starting their routes from a cross-dock depot and for a specific time slot. Each prediction specifies how many deliveries in total the drivers in a given cross-dock can make for a certain time-slot of the day. Our results show that the GPR model outperforms other state-of-the-art regression methods. We also improve our model by updating it daily using shipments delivered within the day, in response to unexpected events during the day, as well as accounting for special occasions like Black Friday or Christmas.KeywordsTransportationE-commerce logisticsCapacity planningGaussian process regressionContinual learning" @default.
- W4210601013 created "2022-02-08" @default.
- W4210601013 creator A5014210268 @default.
- W4210601013 creator A5048304942 @default.
- W4210601013 creator A5063225628 @default.
- W4210601013 creator A5064530367 @default.
- W4210601013 creator A5084485442 @default.
- W4210601013 date "2022-01-01" @default.
- W4210601013 modified "2023-09-24" @default.
- W4210601013 title "A Machine Learning Approach to Daily Capacity Planning in E-Commerce Logistics" @default.
- W4210601013 cites W2796262018 @default.
- W4210601013 cites W2799120238 @default.
- W4210601013 cites W2804446681 @default.
- W4210601013 cites W2935877504 @default.
- W4210601013 cites W3034487379 @default.
- W4210601013 cites W3048155525 @default.
- W4210601013 cites W3088914339 @default.
- W4210601013 cites W3113581665 @default.
- W4210601013 doi "https://doi.org/10.1007/978-3-030-95470-3_4" @default.
- W4210601013 hasPublicationYear "2022" @default.
- W4210601013 type Work @default.
- W4210601013 citedByCount "1" @default.
- W4210601013 countsByYear W42106010132023 @default.
- W4210601013 crossrefType "book-chapter" @default.
- W4210601013 hasAuthorship W4210601013A5014210268 @default.
- W4210601013 hasAuthorship W4210601013A5048304942 @default.
- W4210601013 hasAuthorship W4210601013A5063225628 @default.
- W4210601013 hasAuthorship W4210601013A5064530367 @default.
- W4210601013 hasAuthorship W4210601013A5084485442 @default.
- W4210601013 hasConcept C111919701 @default.
- W4210601013 hasConcept C127413603 @default.
- W4210601013 hasConcept C2776036281 @default.
- W4210601013 hasConcept C2781007418 @default.
- W4210601013 hasConcept C41008148 @default.
- W4210601013 hasConcept C42475967 @default.
- W4210601013 hasConcept C78519656 @default.
- W4210601013 hasConcept C98045186 @default.
- W4210601013 hasConceptScore W4210601013C111919701 @default.
- W4210601013 hasConceptScore W4210601013C127413603 @default.
- W4210601013 hasConceptScore W4210601013C2776036281 @default.
- W4210601013 hasConceptScore W4210601013C2781007418 @default.
- W4210601013 hasConceptScore W4210601013C41008148 @default.
- W4210601013 hasConceptScore W4210601013C42475967 @default.
- W4210601013 hasConceptScore W4210601013C78519656 @default.
- W4210601013 hasConceptScore W4210601013C98045186 @default.
- W4210601013 hasLocation W42106010131 @default.
- W4210601013 hasOpenAccess W4210601013 @default.
- W4210601013 hasPrimaryLocation W42106010131 @default.
- W4210601013 hasRelatedWork W1602072618 @default.
- W4210601013 hasRelatedWork W1976535716 @default.
- W4210601013 hasRelatedWork W2036262816 @default.
- W4210601013 hasRelatedWork W2119327151 @default.
- W4210601013 hasRelatedWork W2152087638 @default.
- W4210601013 hasRelatedWork W2370652759 @default.
- W4210601013 hasRelatedWork W2379162918 @default.
- W4210601013 hasRelatedWork W2496475388 @default.
- W4210601013 hasRelatedWork W831794578 @default.
- W4210601013 hasRelatedWork W2012842278 @default.
- W4210601013 isParatext "false" @default.
- W4210601013 isRetracted "false" @default.
- W4210601013 workType "book-chapter" @default.