Matches in SemOpenAlex for { <https://semopenalex.org/work/W4210605514> ?p ?o ?g. }
- W4210605514 endingPage "1061" @default.
- W4210605514 startingPage "1061" @default.
- W4210605514 abstract "We review the latest modeling techniques and propose new hybrid SAELSTM framework based on Deep Learning (DL) to construct prediction intervals for daily Global Solar Radiation (GSR) using the Manta Ray Foraging Optimization (MRFO) feature selection to select model parameters. Features are employed as potential inputs for Long Short-Term Memory and a seq2seq SAELSTM autoencoder Deep Learning (DL) system in the final GSR prediction. Six solar energy farms in Queensland, Australia are considered to evaluate the method with predictors from Global Climate Models and ground-based observation. Comparisons are carried out among DL models (i.e., Deep Neural Network) and conventional Machine Learning algorithms (i.e., Gradient Boosting Regression, Random Forest Regression, Extremely Randomized Trees, and Adaptive Boosting Regression). The hyperparameters are deduced with grid search, and simulations demonstrate that the DL hybrid SAELSTM model is accurate compared with the other models as well as the persistence methods. The SAELSTM model obtains quality solar energy prediction intervals with high coverage probability and low interval errors. The review and new modelling results utilising an autoencoder deep learning method show that our approach is acceptable to predict solar radiation, and therefore is useful in solar energy monitoring systems to capture the stochastic variations in solar power generation due to cloud cover, aerosols, ozone changes, and other atmospheric attenuation factors." @default.
- W4210605514 created "2022-02-08" @default.
- W4210605514 creator A5031022520 @default.
- W4210605514 creator A5049303725 @default.
- W4210605514 creator A5050915145 @default.
- W4210605514 creator A5060780612 @default.
- W4210605514 creator A5065141057 @default.
- W4210605514 creator A5076869167 @default.
- W4210605514 date "2022-01-31" @default.
- W4210605514 modified "2023-10-18" @default.
- W4210605514 title "Stacked LSTM Sequence-to-Sequence Autoencoder with Feature Selection for Daily Solar Radiation Prediction: A Review and New Modeling Results" @default.
- W4210605514 cites W1469381315 @default.
- W4210605514 cites W1483959923 @default.
- W4210605514 cites W1966490307 @default.
- W4210605514 cites W1988510559 @default.
- W4210605514 cites W1995384696 @default.
- W4210605514 cites W2001396749 @default.
- W4210605514 cites W2005059732 @default.
- W4210605514 cites W2023106675 @default.
- W4210605514 cites W2037460094 @default.
- W4210605514 cites W2039240409 @default.
- W4210605514 cites W2040298412 @default.
- W4210605514 cites W2052437577 @default.
- W4210605514 cites W2056132907 @default.
- W4210605514 cites W2065902166 @default.
- W4210605514 cites W2070493638 @default.
- W4210605514 cites W2076453779 @default.
- W4210605514 cites W2076753282 @default.
- W4210605514 cites W2085833510 @default.
- W4210605514 cites W2089078082 @default.
- W4210605514 cites W2111286455 @default.
- W4210605514 cites W2132477882 @default.
- W4210605514 cites W2136848157 @default.
- W4210605514 cites W2138763184 @default.
- W4210605514 cites W2144224354 @default.
- W4210605514 cites W2145843133 @default.
- W4210605514 cites W2155431069 @default.
- W4210605514 cites W2160309456 @default.
- W4210605514 cites W2160841990 @default.
- W4210605514 cites W2274744025 @default.
- W4210605514 cites W2298521547 @default.
- W4210605514 cites W2605224847 @default.
- W4210605514 cites W2737654582 @default.
- W4210605514 cites W2766387448 @default.
- W4210605514 cites W2766566007 @default.
- W4210605514 cites W2772433304 @default.
- W4210605514 cites W2782945673 @default.
- W4210605514 cites W2787257507 @default.
- W4210605514 cites W2790160110 @default.
- W4210605514 cites W2792326773 @default.
- W4210605514 cites W2794078445 @default.
- W4210605514 cites W2799674728 @default.
- W4210605514 cites W2799686667 @default.
- W4210605514 cites W2800437387 @default.
- W4210605514 cites W2807252330 @default.
- W4210605514 cites W2807496096 @default.
- W4210605514 cites W2902071146 @default.
- W4210605514 cites W2906239552 @default.
- W4210605514 cites W2911892655 @default.
- W4210605514 cites W2911964244 @default.
- W4210605514 cites W2914530224 @default.
- W4210605514 cites W2917680112 @default.
- W4210605514 cites W2920985758 @default.
- W4210605514 cites W2946596023 @default.
- W4210605514 cites W2951458873 @default.
- W4210605514 cites W2954174953 @default.
- W4210605514 cites W2963928450 @default.
- W4210605514 cites W2964046661 @default.
- W4210605514 cites W2965376962 @default.
- W4210605514 cites W2966130868 @default.
- W4210605514 cites W2968862935 @default.
- W4210605514 cites W2969308181 @default.
- W4210605514 cites W2969606774 @default.
- W4210605514 cites W2972734229 @default.
- W4210605514 cites W2973472358 @default.
- W4210605514 cites W2979956032 @default.
- W4210605514 cites W2981648891 @default.
- W4210605514 cites W2982453621 @default.
- W4210605514 cites W2988364570 @default.
- W4210605514 cites W2990110506 @default.
- W4210605514 cites W2998639137 @default.
- W4210605514 cites W3002217632 @default.
- W4210605514 cites W3003806916 @default.
- W4210605514 cites W3008235510 @default.
- W4210605514 cites W3016329040 @default.
- W4210605514 cites W3018344542 @default.
- W4210605514 cites W3018770027 @default.
- W4210605514 cites W3022211274 @default.
- W4210605514 cites W3024509612 @default.
- W4210605514 cites W3028104798 @default.
- W4210605514 cites W3033417100 @default.
- W4210605514 cites W3033616466 @default.
- W4210605514 cites W3037712939 @default.
- W4210605514 cites W3040413340 @default.
- W4210605514 cites W3043643934 @default.
- W4210605514 cites W3047319676 @default.
- W4210605514 cites W3048036752 @default.
- W4210605514 cites W3048904406 @default.