Matches in SemOpenAlex for { <https://semopenalex.org/work/W4210630844> ?p ?o ?g. }
- W4210630844 abstract "Abstract Background Chest X-ray (CXR) screening is a useful diagnostic tool to test individuals at high risk of tuberculosis (TB), yet image interpretation requires trained human readers who are in short supply in many high TB burden countries. Therefore, CXR interpretation by computer-aided detection software (CAD) may overcome some of these challenges, but evidence on its accuracy is still limited. We established a CXR library with images and metadata from individuals and risk groups that underwent TB screening in a variety of countries to assess the diagnostic accuracy of three commercial CAD solutions through an individual participant meta-analysis. Methods and findings We collected digital CXRs and demographic and clinical data from 6 source studies involving a total of 2756 participants, 1753 (64%) of whom also had microbiological test information. All CXR images were analyzed with CAD4TB v6 (Delft Imaging), Lunit Insight CXR TB algorithm v4.9.0 (Lunit Inc.), and qXR v2 (Qure.ai) and re-read by an expert radiologist who was blinded to the initial CXR reading, the CAD scores, and participant information. While the performance of CAD varied across source studies, the pooled, meta-analyzed summary receiver operating characteristic (ROC) curves of the three products against a microbiological reference standard were similar, with area under the curves (AUCs) of 76.4 (95% CI 72.1-80.3) for CAD4TB, 83.3 (95% CI 78.4-87.2) for Lunit, and 76.4 (95% CI 72.1-80.3) for qXR. None of the CAD products, or the radiologists, met the targets for a triage test of 90% sensitivity and 70% specificity. At the same sensitivity of the expert radiologist (94.0%), all CAD had slightly lower point estimates for specificity (22.4% (95% CI 16.9-29.0) for CAD4TB, 34.6% (95% CI 25.3-45.1) for qXR, and 41.0% (95% CI 30.1-53.0) for Lunit compared to 45.6% for the expert radiologist). At the same specificity of 45.6%, all CAD products had lower point estimates for sensitivity but overlapping CIs with the sensitivity estimate of the radiologist. Conclusions We showed that, overall, three commercially available CAD products had a reasonable diagnostic accuracy for microbiologically confirmed pulmonary TB and may achieve a sensitivity and specificity that approximates those of experienced radiologists. While threshold setting and cost-effectiveness modelling are needed to inform the optimal implementation of CAD products as part of screening programs, the availability of CAD will assist in scaling up active case finding for TB and hence contribute to TB elimination in these settings." @default.
- W4210630844 created "2022-02-08" @default.
- W4210630844 creator A5000539122 @default.
- W4210630844 creator A5002631202 @default.
- W4210630844 creator A5006317460 @default.
- W4210630844 creator A5013244139 @default.
- W4210630844 creator A5016739706 @default.
- W4210630844 creator A5018494669 @default.
- W4210630844 creator A5020688960 @default.
- W4210630844 creator A5022367224 @default.
- W4210630844 creator A5023545883 @default.
- W4210630844 creator A5025118287 @default.
- W4210630844 creator A5042290905 @default.
- W4210630844 creator A5044066287 @default.
- W4210630844 creator A5045778395 @default.
- W4210630844 creator A5050189873 @default.
- W4210630844 creator A5056139536 @default.
- W4210630844 creator A5057277707 @default.
- W4210630844 creator A5057417364 @default.
- W4210630844 creator A5065054341 @default.
- W4210630844 creator A5070496299 @default.
- W4210630844 creator A5070585126 @default.
- W4210630844 creator A5082100663 @default.
- W4210630844 creator A5088995714 @default.
- W4210630844 creator A5091501202 @default.
- W4210630844 creator A5091509530 @default.
- W4210630844 date "2022-01-27" @default.
- W4210630844 modified "2023-10-02" @default.
- W4210630844 title "Diagnostic accuracy of chest X-ray interpretation for tuberculosis by three artificial intelligence-based software in a screening use-case: an individual patient meta-analysis of global data" @default.
- W4210630844 cites W1918241676 @default.
- W4210630844 cites W2002335899 @default.
- W4210630844 cites W2181839931 @default.
- W4210630844 cites W2512059932 @default.
- W4210630844 cites W2609521275 @default.
- W4210630844 cites W2735102775 @default.
- W4210630844 cites W2744042391 @default.
- W4210630844 cites W2801168973 @default.
- W4210630844 cites W2972112160 @default.
- W4210630844 cites W3018964764 @default.
- W4210630844 cites W3020992444 @default.
- W4210630844 cites W3092043649 @default.
- W4210630844 cites W3120863491 @default.
- W4210630844 cites W3164863612 @default.
- W4210630844 cites W3173691875 @default.
- W4210630844 cites W3184797773 @default.
- W4210630844 cites W3195562651 @default.
- W4210630844 cites W4210699850 @default.
- W4210630844 doi "https://doi.org/10.1101/2022.01.24.22269730" @default.
- W4210630844 hasPublicationYear "2022" @default.
- W4210630844 type Work @default.
- W4210630844 citedByCount "5" @default.
- W4210630844 countsByYear W42106308442022 @default.
- W4210630844 countsByYear W42106308442023 @default.
- W4210630844 crossrefType "posted-content" @default.
- W4210630844 hasAuthorship W4210630844A5000539122 @default.
- W4210630844 hasAuthorship W4210630844A5002631202 @default.
- W4210630844 hasAuthorship W4210630844A5006317460 @default.
- W4210630844 hasAuthorship W4210630844A5013244139 @default.
- W4210630844 hasAuthorship W4210630844A5016739706 @default.
- W4210630844 hasAuthorship W4210630844A5018494669 @default.
- W4210630844 hasAuthorship W4210630844A5020688960 @default.
- W4210630844 hasAuthorship W4210630844A5022367224 @default.
- W4210630844 hasAuthorship W4210630844A5023545883 @default.
- W4210630844 hasAuthorship W4210630844A5025118287 @default.
- W4210630844 hasAuthorship W4210630844A5042290905 @default.
- W4210630844 hasAuthorship W4210630844A5044066287 @default.
- W4210630844 hasAuthorship W4210630844A5045778395 @default.
- W4210630844 hasAuthorship W4210630844A5050189873 @default.
- W4210630844 hasAuthorship W4210630844A5056139536 @default.
- W4210630844 hasAuthorship W4210630844A5057277707 @default.
- W4210630844 hasAuthorship W4210630844A5057417364 @default.
- W4210630844 hasAuthorship W4210630844A5065054341 @default.
- W4210630844 hasAuthorship W4210630844A5070496299 @default.
- W4210630844 hasAuthorship W4210630844A5070585126 @default.
- W4210630844 hasAuthorship W4210630844A5082100663 @default.
- W4210630844 hasAuthorship W4210630844A5088995714 @default.
- W4210630844 hasAuthorship W4210630844A5091501202 @default.
- W4210630844 hasAuthorship W4210630844A5091509530 @default.
- W4210630844 hasBestOaLocation W42106308441 @default.
- W4210630844 hasConcept C111919701 @default.
- W4210630844 hasConcept C126322002 @default.
- W4210630844 hasConcept C126838900 @default.
- W4210630844 hasConcept C127413603 @default.
- W4210630844 hasConcept C142724271 @default.
- W4210630844 hasConcept C154945302 @default.
- W4210630844 hasConcept C194789388 @default.
- W4210630844 hasConcept C19527891 @default.
- W4210630844 hasConcept C199360897 @default.
- W4210630844 hasConcept C199639397 @default.
- W4210630844 hasConcept C2777904410 @default.
- W4210630844 hasConcept C2779549770 @default.
- W4210630844 hasConcept C2781069245 @default.
- W4210630844 hasConcept C41008148 @default.
- W4210630844 hasConcept C58471807 @default.
- W4210630844 hasConcept C71924100 @default.
- W4210630844 hasConcept C93518851 @default.
- W4210630844 hasConcept C95190672 @default.
- W4210630844 hasConceptScore W4210630844C111919701 @default.
- W4210630844 hasConceptScore W4210630844C126322002 @default.
- W4210630844 hasConceptScore W4210630844C126838900 @default.