Matches in SemOpenAlex for { <https://semopenalex.org/work/W4210632428> ?p ?o ?g. }
- W4210632428 endingPage "130805" @default.
- W4210632428 startingPage "130805" @default.
- W4210632428 abstract "Iron- and steelmaking cause ∼7% of the global CO2 emissions, due to the use of carbon for the reduction of iron ores. Replacing carbon by hydrogen as the reductant offers a pathway to massively reduce these emissions. However, the production of hydrogen using renewable energy will remain as one of the bottlenecks at least during the next two decades, because making the gigantic annual crude steel production of 1.8 billion tons sustainable requires a minimum stoichiometric amount of ∼97 million tons of green hydrogen per year. Another fundamental aspect to render the ironmaking sector more sustainable lies in an optimal utilization of green hydrogen and energy, thus reducing efforts for costly in-process hydrogen recycling. We therefore demonstrate here how the efficiency in hydrogen and energy consumption during iron ore reduction can be dramatically improved by the knowledge-based combination of two technologies: partially reducing the ore at low temperature via solid-state direct reduction (DR) to a kinetically defined degree, and subsequently melting and completely transforming it to iron under a reducing plasma (i.e. via hydrogen plasma reduction, HPR). Results suggest that an optimal transition point between these two technologies occurs where their efficiency in hydrogen utilization is equal. We found that the reduction of hematite through magnetite into wüstite via DR is clean and efficient, but it gets sluggish and inefficient when iron forms at the outermost layers of the iron ore pellets. Conversely, HPR starts violent and unstable with arc delocalization, but proceeds smoothly and efficiently when processing semi-reduced oxides, an effect which might be related to the material's high electrical conductivity. We performed hybrid reduction experiments by partially reducing hematite pellets via DR at 700 °C to 38% global reduction (using a standard thermogravimetry system) and subsequently transferring them to HPR, conducted with a lean gas mixture of Ar-10%H2 in an arc-melting furnace, to achieve full conversion into liquid iron. This hybrid approach allows to exploit the specific characteristics and kinetically favourable regimes of both technologies, while simultaneously showing the potential to keep the consumption of energy and hydrogen low and improve both, process stability and furnace longevity by limiting its overexposure to plasma radiation." @default.
- W4210632428 created "2022-02-08" @default.
- W4210632428 creator A5007521237 @default.
- W4210632428 creator A5040419570 @default.
- W4210632428 creator A5041020801 @default.
- W4210632428 creator A5069653060 @default.
- W4210632428 creator A5079473332 @default.
- W4210632428 creator A5087755476 @default.
- W4210632428 creator A5089687166 @default.
- W4210632428 date "2022-03-01" @default.
- W4210632428 modified "2023-10-15" @default.
- W4210632428 title "Green steel at its crossroads: Hybrid hydrogen-based reduction of iron ores" @default.
- W4210632428 cites W1968333787 @default.
- W4210632428 cites W1970023471 @default.
- W4210632428 cites W1990945851 @default.
- W4210632428 cites W2022260885 @default.
- W4210632428 cites W2027279356 @default.
- W4210632428 cites W2037096446 @default.
- W4210632428 cites W2064904027 @default.
- W4210632428 cites W2076892741 @default.
- W4210632428 cites W2094827197 @default.
- W4210632428 cites W2186412737 @default.
- W4210632428 cites W2401632095 @default.
- W4210632428 cites W2593953524 @default.
- W4210632428 cites W2596258578 @default.
- W4210632428 cites W2602746127 @default.
- W4210632428 cites W2889165195 @default.
- W4210632428 cites W2904662583 @default.
- W4210632428 cites W2942308521 @default.
- W4210632428 cites W2969900502 @default.
- W4210632428 cites W3003497860 @default.
- W4210632428 cites W3004106755 @default.
- W4210632428 cites W3004437992 @default.
- W4210632428 cites W3025833334 @default.
- W4210632428 cites W3029504345 @default.
- W4210632428 cites W3041602389 @default.
- W4210632428 cites W3080880534 @default.
- W4210632428 cites W3093718436 @default.
- W4210632428 cites W3117037508 @default.
- W4210632428 cites W3130946277 @default.
- W4210632428 cites W3157135798 @default.
- W4210632428 cites W3163843771 @default.
- W4210632428 cites W3216910788 @default.
- W4210632428 cites W4206020433 @default.
- W4210632428 doi "https://doi.org/10.1016/j.jclepro.2022.130805" @default.
- W4210632428 hasPublicationYear "2022" @default.
- W4210632428 type Work @default.
- W4210632428 citedByCount "28" @default.
- W4210632428 countsByYear W42106324282022 @default.
- W4210632428 countsByYear W42106324282023 @default.
- W4210632428 crossrefType "journal-article" @default.
- W4210632428 hasAuthorship W4210632428A5007521237 @default.
- W4210632428 hasAuthorship W4210632428A5040419570 @default.
- W4210632428 hasAuthorship W4210632428A5041020801 @default.
- W4210632428 hasAuthorship W4210632428A5069653060 @default.
- W4210632428 hasAuthorship W4210632428A5079473332 @default.
- W4210632428 hasAuthorship W4210632428A5087755476 @default.
- W4210632428 hasAuthorship W4210632428A5089687166 @default.
- W4210632428 hasBestOaLocation W42106324282 @default.
- W4210632428 hasConcept C104779481 @default.
- W4210632428 hasConcept C104806805 @default.
- W4210632428 hasConcept C119599485 @default.
- W4210632428 hasConcept C127413603 @default.
- W4210632428 hasConcept C140205800 @default.
- W4210632428 hasConcept C159985019 @default.
- W4210632428 hasConcept C178790620 @default.
- W4210632428 hasConcept C185592680 @default.
- W4210632428 hasConcept C186423591 @default.
- W4210632428 hasConcept C188573790 @default.
- W4210632428 hasConcept C191897082 @default.
- W4210632428 hasConcept C192562407 @default.
- W4210632428 hasConcept C24763909 @default.
- W4210632428 hasConcept C2777781897 @default.
- W4210632428 hasConcept C2779131772 @default.
- W4210632428 hasConcept C2779193389 @default.
- W4210632428 hasConcept C2779748816 @default.
- W4210632428 hasConcept C2780269488 @default.
- W4210632428 hasConcept C2780584874 @default.
- W4210632428 hasConcept C39432304 @default.
- W4210632428 hasConcept C42360764 @default.
- W4210632428 hasConcept C512968161 @default.
- W4210632428 hasConceptScore W4210632428C104779481 @default.
- W4210632428 hasConceptScore W4210632428C104806805 @default.
- W4210632428 hasConceptScore W4210632428C119599485 @default.
- W4210632428 hasConceptScore W4210632428C127413603 @default.
- W4210632428 hasConceptScore W4210632428C140205800 @default.
- W4210632428 hasConceptScore W4210632428C159985019 @default.
- W4210632428 hasConceptScore W4210632428C178790620 @default.
- W4210632428 hasConceptScore W4210632428C185592680 @default.
- W4210632428 hasConceptScore W4210632428C186423591 @default.
- W4210632428 hasConceptScore W4210632428C188573790 @default.
- W4210632428 hasConceptScore W4210632428C191897082 @default.
- W4210632428 hasConceptScore W4210632428C192562407 @default.
- W4210632428 hasConceptScore W4210632428C24763909 @default.
- W4210632428 hasConceptScore W4210632428C2777781897 @default.
- W4210632428 hasConceptScore W4210632428C2779131772 @default.
- W4210632428 hasConceptScore W4210632428C2779193389 @default.
- W4210632428 hasConceptScore W4210632428C2779748816 @default.