Matches in SemOpenAlex for { <https://semopenalex.org/work/W4210644902> ?p ?o ?g. }
Showing items 1 to 74 of
74
with 100 items per page.
- W4210644902 endingPage "516" @default.
- W4210644902 startingPage "507" @default.
- W4210644902 abstract "A universal concern impacting individuals, businesses, and governments has arisen with regard to the security of the networked infrastructure. Networked network attacks have considerably increased, and attackers’ strategies are developing. Another approach is to stop these attacks from happening in the first place. There are other approaches for constructing IDSs. One successful technique is to use machine learning. When discriminative and representative qualities are utilized, an IDS will experience an exponential rise in performance. Two unique strategies are used for lowering the number of features. First, an AE reduces the dimensionality of features and, second, Principal Component Analysis is used to produce new, higher-order features. Classifiers like Bayesian Network, Support Vector Machines, and Random Forest are produced using the two classifier generation strategies. Binary classification trials help increase the Accuracy, Detection Rate, F-measure, and False Alarm Rate. As a result of this research, data characteristics from NSL-KDD will be removed from 41 to 10 from the dataset, resulting in a 99.6% accuracy rating in the multi-class and binary modes." @default.
- W4210644902 created "2022-02-08" @default.
- W4210644902 creator A5036148979 @default.
- W4210644902 creator A5070103414 @default.
- W4210644902 date "2022-01-01" @default.
- W4210644902 modified "2023-09-28" @default.
- W4210644902 title "Effective Dimensionality Reduction Techniques for Network Intrusion Detection System Based on Deep Learning" @default.
- W4210644902 cites W1982778443 @default.
- W4210644902 cites W1995678176 @default.
- W4210644902 cites W2038765014 @default.
- W4210644902 cites W2335999708 @default.
- W4210644902 cites W2603028866 @default.
- W4210644902 cites W2734718015 @default.
- W4210644902 cites W2743475759 @default.
- W4210644902 cites W2763978449 @default.
- W4210644902 cites W2789828921 @default.
- W4210644902 cites W2886509629 @default.
- W4210644902 cites W2897411553 @default.
- W4210644902 cites W2913330314 @default.
- W4210644902 cites W2921708219 @default.
- W4210644902 cites W3023190635 @default.
- W4210644902 cites W3096525537 @default.
- W4210644902 doi "https://doi.org/10.1007/978-981-16-6460-1_39" @default.
- W4210644902 hasPublicationYear "2022" @default.
- W4210644902 type Work @default.
- W4210644902 citedByCount "1" @default.
- W4210644902 countsByYear W42106449022022 @default.
- W4210644902 crossrefType "book-chapter" @default.
- W4210644902 hasAuthorship W4210644902A5036148979 @default.
- W4210644902 hasAuthorship W4210644902A5070103414 @default.
- W4210644902 hasConcept C111030470 @default.
- W4210644902 hasConcept C119857082 @default.
- W4210644902 hasConcept C12267149 @default.
- W4210644902 hasConcept C124101348 @default.
- W4210644902 hasConcept C153180895 @default.
- W4210644902 hasConcept C154945302 @default.
- W4210644902 hasConcept C169258074 @default.
- W4210644902 hasConcept C27438332 @default.
- W4210644902 hasConcept C35525427 @default.
- W4210644902 hasConcept C41008148 @default.
- W4210644902 hasConcept C66905080 @default.
- W4210644902 hasConcept C70518039 @default.
- W4210644902 hasConcept C97931131 @default.
- W4210644902 hasConceptScore W4210644902C111030470 @default.
- W4210644902 hasConceptScore W4210644902C119857082 @default.
- W4210644902 hasConceptScore W4210644902C12267149 @default.
- W4210644902 hasConceptScore W4210644902C124101348 @default.
- W4210644902 hasConceptScore W4210644902C153180895 @default.
- W4210644902 hasConceptScore W4210644902C154945302 @default.
- W4210644902 hasConceptScore W4210644902C169258074 @default.
- W4210644902 hasConceptScore W4210644902C27438332 @default.
- W4210644902 hasConceptScore W4210644902C35525427 @default.
- W4210644902 hasConceptScore W4210644902C41008148 @default.
- W4210644902 hasConceptScore W4210644902C66905080 @default.
- W4210644902 hasConceptScore W4210644902C70518039 @default.
- W4210644902 hasConceptScore W4210644902C97931131 @default.
- W4210644902 hasLocation W42106449021 @default.
- W4210644902 hasOpenAccess W4210644902 @default.
- W4210644902 hasPrimaryLocation W42106449021 @default.
- W4210644902 hasRelatedWork W2012491005 @default.
- W4210644902 hasRelatedWork W2082691086 @default.
- W4210644902 hasRelatedWork W2150085486 @default.
- W4210644902 hasRelatedWork W3004377704 @default.
- W4210644902 hasRelatedWork W3004897296 @default.
- W4210644902 hasRelatedWork W3110687914 @default.
- W4210644902 hasRelatedWork W3165907317 @default.
- W4210644902 hasRelatedWork W4220663171 @default.
- W4210644902 hasRelatedWork W4225691219 @default.
- W4210644902 hasRelatedWork W4320483443 @default.
- W4210644902 isParatext "false" @default.
- W4210644902 isRetracted "false" @default.
- W4210644902 workType "book-chapter" @default.