Matches in SemOpenAlex for { <https://semopenalex.org/work/W4210645051> ?p ?o ?g. }
Showing items 1 to 88 of
88
with 100 items per page.
- W4210645051 abstract "<sec> <title>BACKGROUND</title> Stroke is the worldwide leading cause of long-term disabilities. Women experience more activity limitations, worse health-related quality of life, and more poststroke depression than men. Twitter is increasingly used by individuals to broadcast their day-to-day happenings, providing unobtrusive access to samples of spontaneously expressed opinions on all types of topics and emotions. </sec> <sec> <title>OBJECTIVE</title> This study aimed to consider the raw frequencies of words in the collection of tweets posted by a sample of stroke survivors and to compare the posts by gender of the survivor for 8 basic emotions (anger, fear, anticipation, surprise, joy, sadness, trust and disgust); determine the proportion of each emotion in the collection of tweets and statistically compare each of them by gender of the survivor; extract the main topics (represented as sets of words) that occur in the collection of tweets, relative to each gender; and assign happiness scores to tweets and topics (using a well-established tool) and compare them by gender of the survivor. </sec> <sec> <title>METHODS</title> We performed sentiment analysis based on a state-of-the-art lexicon (National Research Council) with syuzhet R package. The emotion scores for men and women were first subjected to an F-test and then to a Wilcoxon rank sum test. We extended the emotional analysis, assigning happiness scores with the hedonometer (a tool specifically designed considering Twitter inputs). We calculated daily happiness average scores for all tweets. We created a term map for an exploratory clustering analysis using VosViewer software. We performed structural topic modelling with stm R package, allowing us to identify main topics by gender. We assigned happiness scores to all the words defining the main identified topics and compared them by gender. </sec> <sec> <title>RESULTS</title> We analyzed 800,424 tweets posted from August 1, 2007 to December 1, 2018, by 479 stroke survivors: Women (n=244) posted 396,898 tweets, and men (n=235) posted 403,526 tweets. The stroke survivor condition and gender as well as membership in at least 3 stroke-specific Twitter lists of active users were manually verified for all 479 participants. Their total number of tweets since 2007 was 5,257,433; therefore, we analyzed the most recent 15.2% of all their tweets. Positive emotions (anticipation, trust, and joy) were significantly higher (P<.001) in women, while negative emotions (disgust, fear, and sadness) were significantly higher (P<.001) in men in the analysis of raw frequencies and proportion of emotions. Happiness mean scores throughout the considered period show higher levels of happiness in women. We calculated the top 20 topics (with percentages and CIs) more likely addressed by gender and found that women’s topics show higher levels of happiness scores. </sec> <sec> <title>CONCLUSIONS</title> We applied two different approaches—the Plutchik model and hedonometer tool—to a sample of stroke survivors’ tweets. We conclude that women express positive emotions and happiness much more than men. </sec>" @default.
- W4210645051 created "2022-02-08" @default.
- W4210645051 creator A5022914359 @default.
- W4210645051 creator A5032795250 @default.
- W4210645051 creator A5046498687 @default.
- W4210645051 creator A5076052007 @default.
- W4210645051 date "2019-03-23" @default.
- W4210645051 modified "2023-10-15" @default.
- W4210645051 title "Stroke Survivors on Twitter: Sentiment and Topic Analysis From a Gender Perspective (Preprint)" @default.
- W4210645051 cites W1458448385 @default.
- W4210645051 cites W1985523900 @default.
- W4210645051 cites W1994466157 @default.
- W4210645051 cites W2023369317 @default.
- W4210645051 cites W2058234260 @default.
- W4210645051 cites W2090487057 @default.
- W4210645051 cites W2099366530 @default.
- W4210645051 cites W2112656539 @default.
- W4210645051 cites W2179884416 @default.
- W4210645051 cites W2466307579 @default.
- W4210645051 cites W2509453878 @default.
- W4210645051 cites W2765108713 @default.
- W4210645051 cites W2774393944 @default.
- W4210645051 cites W2782233779 @default.
- W4210645051 cites W2783147595 @default.
- W4210645051 cites W2789493770 @default.
- W4210645051 cites W2800727526 @default.
- W4210645051 cites W2963453445 @default.
- W4210645051 cites W3099640513 @default.
- W4210645051 cites W4232828497 @default.
- W4210645051 doi "https://doi.org/10.2196/preprints.14077" @default.
- W4210645051 hasPublicationYear "2019" @default.
- W4210645051 type Work @default.
- W4210645051 citedByCount "0" @default.
- W4210645051 crossrefType "posted-content" @default.
- W4210645051 hasAuthorship W4210645051A5022914359 @default.
- W4210645051 hasAuthorship W4210645051A5032795250 @default.
- W4210645051 hasAuthorship W4210645051A5046498687 @default.
- W4210645051 hasAuthorship W4210645051A5076052007 @default.
- W4210645051 hasBestOaLocation W42106450512 @default.
- W4210645051 hasConcept C12713177 @default.
- W4210645051 hasConcept C151730666 @default.
- W4210645051 hasConcept C154945302 @default.
- W4210645051 hasConcept C15744967 @default.
- W4210645051 hasConcept C2777267654 @default.
- W4210645051 hasConcept C2777375102 @default.
- W4210645051 hasConcept C2778999518 @default.
- W4210645051 hasConcept C2779302386 @default.
- W4210645051 hasConcept C2779812673 @default.
- W4210645051 hasConcept C2780343955 @default.
- W4210645051 hasConcept C41008148 @default.
- W4210645051 hasConcept C66402592 @default.
- W4210645051 hasConcept C70410870 @default.
- W4210645051 hasConcept C75630572 @default.
- W4210645051 hasConcept C77805123 @default.
- W4210645051 hasConcept C86803240 @default.
- W4210645051 hasConceptScore W4210645051C12713177 @default.
- W4210645051 hasConceptScore W4210645051C151730666 @default.
- W4210645051 hasConceptScore W4210645051C154945302 @default.
- W4210645051 hasConceptScore W4210645051C15744967 @default.
- W4210645051 hasConceptScore W4210645051C2777267654 @default.
- W4210645051 hasConceptScore W4210645051C2777375102 @default.
- W4210645051 hasConceptScore W4210645051C2778999518 @default.
- W4210645051 hasConceptScore W4210645051C2779302386 @default.
- W4210645051 hasConceptScore W4210645051C2779812673 @default.
- W4210645051 hasConceptScore W4210645051C2780343955 @default.
- W4210645051 hasConceptScore W4210645051C41008148 @default.
- W4210645051 hasConceptScore W4210645051C66402592 @default.
- W4210645051 hasConceptScore W4210645051C70410870 @default.
- W4210645051 hasConceptScore W4210645051C75630572 @default.
- W4210645051 hasConceptScore W4210645051C77805123 @default.
- W4210645051 hasConceptScore W4210645051C86803240 @default.
- W4210645051 hasLocation W42106450511 @default.
- W4210645051 hasLocation W42106450512 @default.
- W4210645051 hasOpenAccess W4210645051 @default.
- W4210645051 hasPrimaryLocation W42106450511 @default.
- W4210645051 hasRelatedWork W2009396855 @default.
- W4210645051 hasRelatedWork W2028755160 @default.
- W4210645051 hasRelatedWork W2054236332 @default.
- W4210645051 hasRelatedWork W2115264480 @default.
- W4210645051 hasRelatedWork W2320066983 @default.
- W4210645051 hasRelatedWork W2763930451 @default.
- W4210645051 hasRelatedWork W2990767291 @default.
- W4210645051 hasRelatedWork W4210397330 @default.
- W4210645051 hasRelatedWork W4309715800 @default.
- W4210645051 hasRelatedWork W2126101179 @default.
- W4210645051 isParatext "false" @default.
- W4210645051 isRetracted "false" @default.
- W4210645051 workType "article" @default.