Matches in SemOpenAlex for { <https://semopenalex.org/work/W4210672645> ?p ?o ?g. }
- W4210672645 abstract "There is substantial evidence suggesting climate change is having an adverse impact on the world's water resources. One must remember, however, that climate change is beset by uncertainty. It is therefore meaningful for climate change impact assessments to be conducted with stochastic-based frameworks. The degree of uncertainty about the nature of a stochastic phenomenon may differ from one another. Deep uncertainty refers to a situation in which the parameters governing intervening probability distributions of the stochastic phenomenon are themselves subjected to some degree of uncertainty. In most climatic studies, however, the assessment of the role of deep-uncertain nature of climate change has been limited. This work contributes to fill this knowledge gap by developing a Markov Chain Monte Carlo (MCMC) analysis involving Bayes' theorem that merges the stochastic patterns of historical data (i.e., the prior distribution) and the regional climate models' (RCMs') generated climate scenarios (i.e., the likelihood function) to redefine the stochastic behavior of a non-conditional climatic variable under climate change conditions (i.e., the posterior distribution). This study accounts for the deep-uncertainty effect by evaluating the stochastic pattern of the central tendency measure of the posterior distributions through regenerating the MCMCs. The Karkheh River Basin, Iran, is chosen to evaluate the proposed method. The reason for selecting this case study was twofold. First, this basin has a central role in ensuring the region's water, food, and energy security. The other reason is the diverse topographic profile of the basin, which imposes predictive challenges for most RCMs. Our results indicate that, while in most seasons, with the notable exception of summer, one can expect a slight drop in the temperature in the near future, the average temperature would continue to rise until eventually surpassing the historically recorded values. The results also revealed that the 95% confidence interval of the central tendency measure of computed posterior probability distributions varies between 0.1 and 0.3 °C. The results suggest exercising caution when employing the RCMs' raw projections, especially in topographically diverse terrain." @default.
- W4210672645 created "2022-02-08" @default.
- W4210672645 creator A5004675565 @default.
- W4210672645 creator A5011600518 @default.
- W4210672645 creator A5034266318 @default.
- W4210672645 creator A5059557510 @default.
- W4210672645 date "2022-02-02" @default.
- W4210672645 modified "2023-09-26" @default.
- W4210672645 title "Sensitivity of non-conditional climatic variables to climate-change deep uncertainty using Markov Chain Monte Carlo simulation" @default.
- W4210672645 cites W1679242182 @default.
- W4210672645 cites W1988677851 @default.
- W4210672645 cites W1993209630 @default.
- W4210672645 cites W1993635292 @default.
- W4210672645 cites W2015554618 @default.
- W4210672645 cites W2032330851 @default.
- W4210672645 cites W2040025202 @default.
- W4210672645 cites W2054593957 @default.
- W4210672645 cites W2056760934 @default.
- W4210672645 cites W2075920507 @default.
- W4210672645 cites W2090487162 @default.
- W4210672645 cites W2098677536 @default.
- W4210672645 cites W2105963649 @default.
- W4210672645 cites W2108198325 @default.
- W4210672645 cites W2121032760 @default.
- W4210672645 cites W2127170577 @default.
- W4210672645 cites W2134074466 @default.
- W4210672645 cites W2138309709 @default.
- W4210672645 cites W2162336303 @default.
- W4210672645 cites W2173425831 @default.
- W4210672645 cites W2343510481 @default.
- W4210672645 cites W2553343437 @default.
- W4210672645 cites W2606040614 @default.
- W4210672645 cites W2785553511 @default.
- W4210672645 cites W2802799512 @default.
- W4210672645 cites W2810047874 @default.
- W4210672645 cites W2884103107 @default.
- W4210672645 cites W2908980190 @default.
- W4210672645 cites W2912247852 @default.
- W4210672645 cites W2962721303 @default.
- W4210672645 cites W2995145442 @default.
- W4210672645 cites W2997309667 @default.
- W4210672645 cites W3000393156 @default.
- W4210672645 cites W3023153149 @default.
- W4210672645 cites W3107152293 @default.
- W4210672645 cites W3204094677 @default.
- W4210672645 cites W3207268204 @default.
- W4210672645 cites W4248681815 @default.
- W4210672645 doi "https://doi.org/10.1038/s41598-022-05643-8" @default.
- W4210672645 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35110579" @default.
- W4210672645 hasPublicationYear "2022" @default.
- W4210672645 type Work @default.
- W4210672645 citedByCount "1" @default.
- W4210672645 countsByYear W42106726452023 @default.
- W4210672645 crossrefType "journal-article" @default.
- W4210672645 hasAuthorship W4210672645A5004675565 @default.
- W4210672645 hasAuthorship W4210672645A5011600518 @default.
- W4210672645 hasAuthorship W4210672645A5034266318 @default.
- W4210672645 hasAuthorship W4210672645A5059557510 @default.
- W4210672645 hasBestOaLocation W42106726451 @default.
- W4210672645 hasConcept C105795698 @default.
- W4210672645 hasConcept C107673813 @default.
- W4210672645 hasConcept C109007969 @default.
- W4210672645 hasConcept C111350023 @default.
- W4210672645 hasConcept C127313418 @default.
- W4210672645 hasConcept C127413603 @default.
- W4210672645 hasConcept C132651083 @default.
- W4210672645 hasConcept C149441793 @default.
- W4210672645 hasConcept C149782125 @default.
- W4210672645 hasConcept C151730666 @default.
- W4210672645 hasConcept C154945302 @default.
- W4210672645 hasConcept C168754636 @default.
- W4210672645 hasConcept C18903297 @default.
- W4210672645 hasConcept C19499675 @default.
- W4210672645 hasConcept C207201462 @default.
- W4210672645 hasConcept C21200559 @default.
- W4210672645 hasConcept C24326235 @default.
- W4210672645 hasConcept C33923547 @default.
- W4210672645 hasConcept C39432304 @default.
- W4210672645 hasConcept C41008148 @default.
- W4210672645 hasConcept C86803240 @default.
- W4210672645 hasConcept C98763669 @default.
- W4210672645 hasConceptScore W4210672645C105795698 @default.
- W4210672645 hasConceptScore W4210672645C107673813 @default.
- W4210672645 hasConceptScore W4210672645C109007969 @default.
- W4210672645 hasConceptScore W4210672645C111350023 @default.
- W4210672645 hasConceptScore W4210672645C127313418 @default.
- W4210672645 hasConceptScore W4210672645C127413603 @default.
- W4210672645 hasConceptScore W4210672645C132651083 @default.
- W4210672645 hasConceptScore W4210672645C149441793 @default.
- W4210672645 hasConceptScore W4210672645C149782125 @default.
- W4210672645 hasConceptScore W4210672645C151730666 @default.
- W4210672645 hasConceptScore W4210672645C154945302 @default.
- W4210672645 hasConceptScore W4210672645C168754636 @default.
- W4210672645 hasConceptScore W4210672645C18903297 @default.
- W4210672645 hasConceptScore W4210672645C19499675 @default.
- W4210672645 hasConceptScore W4210672645C207201462 @default.
- W4210672645 hasConceptScore W4210672645C21200559 @default.
- W4210672645 hasConceptScore W4210672645C24326235 @default.
- W4210672645 hasConceptScore W4210672645C33923547 @default.
- W4210672645 hasConceptScore W4210672645C39432304 @default.