Matches in SemOpenAlex for { <https://semopenalex.org/work/W4210677910> ?p ?o ?g. }
- W4210677910 endingPage "291" @default.
- W4210677910 startingPage "291" @default.
- W4210677910 abstract "Among mental health diseases, depression is one of the most severe, as it often leads to suicide; due to this, it is important to identify and summarize existing evidence concerning depression sign detection research on social media using the data provided by users. This review examines aspects of primary studies exploring depression detection from social media submissions (from 2016 to mid-2021). The search for primary studies was conducted in five digital libraries: ACM Digital Library, IEEE Xplore Digital Library, SpringerLink, Science Direct, and PubMed, as well as on the search engine Google Scholar to broaden the results. Extracting and synthesizing the data from each paper was the main activity of this work. Thirty-four primary studies were analyzed and evaluated. Twitter was the most studied social media for depression sign detection. Word embedding was the most prominent linguistic feature extraction method. Support vector machine (SVM) was the most used machine-learning algorithm. Similarly, the most popular computing tool was from Python libraries. Finally, cross-validation (CV) was the most common statistical analysis method used to evaluate the results obtained. Using social media along with computing tools and classification methods contributes to current efforts in public healthcare to detect signs of depression from sources close to patients." @default.
- W4210677910 created "2022-02-08" @default.
- W4210677910 creator A5009137812 @default.
- W4210677910 creator A5033336466 @default.
- W4210677910 creator A5057616341 @default.
- W4210677910 creator A5067910384 @default.
- W4210677910 creator A5069632503 @default.
- W4210677910 creator A5090348702 @default.
- W4210677910 date "2022-02-01" @default.
- W4210677910 modified "2023-10-01" @default.
- W4210677910 title "Detecting Depression Signs on Social Media: A Systematic Literature Review" @default.
- W4210677910 cites W1512104599 @default.
- W4210677910 cites W1839863673 @default.
- W4210677910 cites W1965398296 @default.
- W4210677910 cites W1980724484 @default.
- W4210677910 cites W2048502321 @default.
- W4210677910 cites W2078396547 @default.
- W4210677910 cites W2092598885 @default.
- W4210677910 cites W2094553285 @default.
- W4210677910 cites W2101612261 @default.
- W4210677910 cites W2105380208 @default.
- W4210677910 cites W2118328848 @default.
- W4210677910 cites W2140910804 @default.
- W4210677910 cites W2156098321 @default.
- W4210677910 cites W2160105117 @default.
- W4210677910 cites W2162041430 @default.
- W4210677910 cites W2169053773 @default.
- W4210677910 cites W2186364273 @default.
- W4210677910 cites W2224826979 @default.
- W4210677910 cites W2250240141 @default.
- W4210677910 cites W2333985697 @default.
- W4210677910 cites W246286872 @default.
- W4210677910 cites W2480709324 @default.
- W4210677910 cites W2489334776 @default.
- W4210677910 cites W2513928994 @default.
- W4210677910 cites W2517490861 @default.
- W4210677910 cites W2582664174 @default.
- W4210677910 cites W2585481167 @default.
- W4210677910 cites W2618742246 @default.
- W4210677910 cites W2623212788 @default.
- W4210677910 cites W2741216199 @default.
- W4210677910 cites W2766629935 @default.
- W4210677910 cites W2767151312 @default.
- W4210677910 cites W2768757617 @default.
- W4210677910 cites W2783557991 @default.
- W4210677910 cites W2790353253 @default.
- W4210677910 cites W2798684758 @default.
- W4210677910 cites W2889686624 @default.
- W4210677910 cites W2898403482 @default.
- W4210677910 cites W2898967081 @default.
- W4210677910 cites W2912654919 @default.
- W4210677910 cites W2915000823 @default.
- W4210677910 cites W2916820140 @default.
- W4210677910 cites W2927148761 @default.
- W4210677910 cites W2936182428 @default.
- W4210677910 cites W2946396904 @default.
- W4210677910 cites W2952732790 @default.
- W4210677910 cites W2955095010 @default.
- W4210677910 cites W2955382130 @default.
- W4210677910 cites W2958299506 @default.
- W4210677910 cites W2973126618 @default.
- W4210677910 cites W2979543333 @default.
- W4210677910 cites W2998644122 @default.
- W4210677910 cites W3001897055 @default.
- W4210677910 cites W3007396185 @default.
- W4210677910 cites W3015928967 @default.
- W4210677910 cites W3016709710 @default.
- W4210677910 cites W3023846141 @default.
- W4210677910 cites W3028133604 @default.
- W4210677910 cites W3039638595 @default.
- W4210677910 cites W3101267588 @default.
- W4210677910 cites W3105682400 @default.
- W4210677910 cites W3122548859 @default.
- W4210677910 cites W3162632106 @default.
- W4210677910 cites W3199956316 @default.
- W4210677910 cites W3213632075 @default.
- W4210677910 cites W4288076060 @default.
- W4210677910 cites W4294215472 @default.
- W4210677910 doi "https://doi.org/10.3390/healthcare10020291" @default.
- W4210677910 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35206905" @default.
- W4210677910 hasPublicationYear "2022" @default.
- W4210677910 type Work @default.
- W4210677910 citedByCount "11" @default.
- W4210677910 countsByYear W42106779102022 @default.
- W4210677910 countsByYear W42106779102023 @default.
- W4210677910 crossrefType "journal-article" @default.
- W4210677910 hasAuthorship W4210677910A5009137812 @default.
- W4210677910 hasAuthorship W4210677910A5033336466 @default.
- W4210677910 hasAuthorship W4210677910A5057616341 @default.
- W4210677910 hasAuthorship W4210677910A5067910384 @default.
- W4210677910 hasAuthorship W4210677910A5069632503 @default.
- W4210677910 hasAuthorship W4210677910A5090348702 @default.
- W4210677910 hasBestOaLocation W42106779101 @default.
- W4210677910 hasConcept C111919701 @default.
- W4210677910 hasConcept C118552586 @default.
- W4210677910 hasConcept C119857082 @default.
- W4210677910 hasConcept C12267149 @default.
- W4210677910 hasConcept C124952713 @default.