Matches in SemOpenAlex for { <https://semopenalex.org/work/W4210709277> ?p ?o ?g. }
- W4210709277 endingPage "1226" @default.
- W4210709277 startingPage "1226" @default.
- W4210709277 abstract "The sophistication of ship detection technology in remote sensing images is insufficient, the detection results differ substantially from the practical requirements, mainly reflected in the inadequate support for the differentiated application of multi-scene, multi-resolution and multi-type target ships. To overcome these challenges, a ship detection method based on multiscale feature extraction and lightweight CNN is proposed. Firstly, the candidate-region extraction method, based on a multiscale model, can cover the potential targets under different backgrounds accurately. Secondly, the multiple feature fusion method is employed to achieve ship classification, in which, Fourier global spectrum features are applied to discriminate between targets and simple interference, and the targets in complex interference scenarios are further distinguished by using lightweight CNN. Thirdly, the cascade classifier training algorithm and an improved non-maximum suppression method are used to minimise the classification error rate and maximise generalisation, which can achieve final-target confirmation. Experimental results validate our method, showing that it significantly outperforms the available alternatives, reducing the model size by up to 2.17 times while improving detection performance be improved by up to 5.5% in multi-interference scenarios. Furthermore, the robustness ability was verified by three indicators, among which the F-measure score and true–false-positive rate can increase by up to 5.8% and 4.7% respectively, while the mean error rate can decrease by up to 38.2%." @default.
- W4210709277 created "2022-02-08" @default.
- W4210709277 creator A5048928060 @default.
- W4210709277 creator A5063330831 @default.
- W4210709277 creator A5079240348 @default.
- W4210709277 date "2022-02-06" @default.
- W4210709277 modified "2023-10-18" @default.
- W4210709277 title "Robust Ship Detection in Infrared Images through Multiscale Feature Extraction and Lightweight CNN" @default.
- W4210709277 cites W1958328135 @default.
- W4210709277 cites W2003059629 @default.
- W4210709277 cites W2041560658 @default.
- W4210709277 cites W2046456446 @default.
- W4210709277 cites W2168336231 @default.
- W4210709277 cites W2344310038 @default.
- W4210709277 cites W2400138547 @default.
- W4210709277 cites W2407220925 @default.
- W4210709277 cites W2442495293 @default.
- W4210709277 cites W2474013209 @default.
- W4210709277 cites W2549030366 @default.
- W4210709277 cites W2565639579 @default.
- W4210709277 cites W2593338382 @default.
- W4210709277 cites W2596246567 @default.
- W4210709277 cites W2597117158 @default.
- W4210709277 cites W2652554038 @default.
- W4210709277 cites W2659533854 @default.
- W4210709277 cites W2768489488 @default.
- W4210709277 cites W2783266131 @default.
- W4210709277 cites W2793706358 @default.
- W4210709277 cites W2808360995 @default.
- W4210709277 cites W2907085048 @default.
- W4210709277 cites W2963299996 @default.
- W4210709277 cites W2963786238 @default.
- W4210709277 cites W2963980128 @default.
- W4210709277 cites W2964121718 @default.
- W4210709277 cites W2964241181 @default.
- W4210709277 cites W2989604896 @default.
- W4210709277 cites W3012573144 @default.
- W4210709277 cites W3034959114 @default.
- W4210709277 cites W3109337433 @default.
- W4210709277 cites W4297845835 @default.
- W4210709277 doi "https://doi.org/10.3390/s22031226" @default.
- W4210709277 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35161971" @default.
- W4210709277 hasPublicationYear "2022" @default.
- W4210709277 type Work @default.
- W4210709277 citedByCount "3" @default.
- W4210709277 countsByYear W42107092772022 @default.
- W4210709277 countsByYear W42107092772023 @default.
- W4210709277 crossrefType "journal-article" @default.
- W4210709277 hasAuthorship W4210709277A5048928060 @default.
- W4210709277 hasAuthorship W4210709277A5063330831 @default.
- W4210709277 hasAuthorship W4210709277A5079240348 @default.
- W4210709277 hasBestOaLocation W42107092771 @default.
- W4210709277 hasConcept C104317684 @default.
- W4210709277 hasConcept C127162648 @default.
- W4210709277 hasConcept C153180895 @default.
- W4210709277 hasConcept C154945302 @default.
- W4210709277 hasConcept C185592680 @default.
- W4210709277 hasConcept C31258907 @default.
- W4210709277 hasConcept C32022120 @default.
- W4210709277 hasConcept C40969351 @default.
- W4210709277 hasConcept C41008148 @default.
- W4210709277 hasConcept C52622490 @default.
- W4210709277 hasConcept C55493867 @default.
- W4210709277 hasConcept C63479239 @default.
- W4210709277 hasConcept C77052588 @default.
- W4210709277 hasConcept C95623464 @default.
- W4210709277 hasConceptScore W4210709277C104317684 @default.
- W4210709277 hasConceptScore W4210709277C127162648 @default.
- W4210709277 hasConceptScore W4210709277C153180895 @default.
- W4210709277 hasConceptScore W4210709277C154945302 @default.
- W4210709277 hasConceptScore W4210709277C185592680 @default.
- W4210709277 hasConceptScore W4210709277C31258907 @default.
- W4210709277 hasConceptScore W4210709277C32022120 @default.
- W4210709277 hasConceptScore W4210709277C40969351 @default.
- W4210709277 hasConceptScore W4210709277C41008148 @default.
- W4210709277 hasConceptScore W4210709277C52622490 @default.
- W4210709277 hasConceptScore W4210709277C55493867 @default.
- W4210709277 hasConceptScore W4210709277C63479239 @default.
- W4210709277 hasConceptScore W4210709277C77052588 @default.
- W4210709277 hasConceptScore W4210709277C95623464 @default.
- W4210709277 hasFunder F4320321001 @default.
- W4210709277 hasIssue "3" @default.
- W4210709277 hasLocation W42107092771 @default.
- W4210709277 hasLocation W42107092772 @default.
- W4210709277 hasLocation W42107092773 @default.
- W4210709277 hasLocation W42107092774 @default.
- W4210709277 hasOpenAccess W4210709277 @default.
- W4210709277 hasPrimaryLocation W42107092771 @default.
- W4210709277 hasRelatedWork W1964120219 @default.
- W4210709277 hasRelatedWork W2000165426 @default.
- W4210709277 hasRelatedWork W2114557664 @default.
- W4210709277 hasRelatedWork W2144059113 @default.
- W4210709277 hasRelatedWork W2146076056 @default.
- W4210709277 hasRelatedWork W2385132419 @default.
- W4210709277 hasRelatedWork W2563096758 @default.
- W4210709277 hasRelatedWork W2772780115 @default.
- W4210709277 hasRelatedWork W2811390910 @default.
- W4210709277 hasRelatedWork W3003836766 @default.