Matches in SemOpenAlex for { <https://semopenalex.org/work/W4210716018> ?p ?o ?g. }
- W4210716018 endingPage "1000" @default.
- W4210716018 startingPage "987" @default.
- W4210716018 abstract "Abstract Fine‐scale tracking with passive acoustic telemetry can yield great insights into the movement ecology of aquatic animals. To predict fine‐scale positions of tagged animals in continuous space from spatially‐discrete detection data, state‐space modelling through the R package YAPS provides a promising alternative to frequently used positioning algorithms. However, YAPS cannot currently classify multiple kinds of movement that may be used as proxies for individual behaviours of study animals (behavioural states), an endeavour that is of increasing interest to movement ecologists. We advance YAPS by incorporating the functionality to predict behavioural states by using an iterative maximization framework. Our model, which we call YAMS, occurs in continuous time and therefore we adapt current hidden Markov model (HMM) machinery to accommodate this while remaining within a likelihood framework that provides rapid fitting. We test our model using simulations and approximately 6 days’ worth of Northern pike data from Hald Lake, Denmark. YAMS is shown to produce accurate parameter estimates and random effect predictions when model results were compared to simulated data, with behavioural state accuracies of 0.94 and 0.79 for two‐ and three‐state models, respectively, and location state root mean squared errors of 1.8 m for both models. In addition, the behavioural states are shown to reflect varying speeds of the pike, yielding a highly interpretable classification. This research has the potential to be broadly applicable to both ecologists interested in identifying fine‐scale space use and behavioural states from acoustic telemetry data, as well as to statisticians who may wish to use standard HMM machinery to fit continuous‐time HMMs to animal movement data." @default.
- W4210716018 created "2022-02-08" @default.
- W4210716018 creator A5014184284 @default.
- W4210716018 creator A5042761663 @default.
- W4210716018 creator A5043562606 @default.
- W4210716018 creator A5069981883 @default.
- W4210716018 creator A5078531816 @default.
- W4210716018 creator A5086961180 @default.
- W4210716018 creator A5087753687 @default.
- W4210716018 date "2022-03-01" @default.
- W4210716018 modified "2023-10-16" @default.
- W4210716018 title "Predicting aquatic animal movements and behavioural states from acoustic telemetry arrays" @default.
- W4210716018 cites W1790462712 @default.
- W4210716018 cites W1841330490 @default.
- W4210716018 cites W1898016893 @default.
- W4210716018 cites W1944732173 @default.
- W4210716018 cites W1996525588 @default.
- W4210716018 cites W2011788988 @default.
- W4210716018 cites W2017839094 @default.
- W4210716018 cites W2018791357 @default.
- W4210716018 cites W2057314736 @default.
- W4210716018 cites W2080842868 @default.
- W4210716018 cites W2092607723 @default.
- W4210716018 cites W2138921381 @default.
- W4210716018 cites W2142202221 @default.
- W4210716018 cites W2142384583 @default.
- W4210716018 cites W2147847107 @default.
- W4210716018 cites W2149839656 @default.
- W4210716018 cites W2157349754 @default.
- W4210716018 cites W2157787485 @default.
- W4210716018 cites W2262133047 @default.
- W4210716018 cites W2294621169 @default.
- W4210716018 cites W2327173511 @default.
- W4210716018 cites W2341959691 @default.
- W4210716018 cites W2345294143 @default.
- W4210716018 cites W2471110538 @default.
- W4210716018 cites W2566090446 @default.
- W4210716018 cites W2570144985 @default.
- W4210716018 cites W2580881188 @default.
- W4210716018 cites W2581700875 @default.
- W4210716018 cites W2596098053 @default.
- W4210716018 cites W2604667181 @default.
- W4210716018 cites W2736690020 @default.
- W4210716018 cites W2752859236 @default.
- W4210716018 cites W2766660926 @default.
- W4210716018 cites W2803147359 @default.
- W4210716018 cites W2811185381 @default.
- W4210716018 cites W2886444891 @default.
- W4210716018 cites W2901915714 @default.
- W4210716018 cites W2921931329 @default.
- W4210716018 cites W2933146376 @default.
- W4210716018 cites W2933552068 @default.
- W4210716018 cites W2963040963 @default.
- W4210716018 cites W2963978069 @default.
- W4210716018 cites W2982441117 @default.
- W4210716018 cites W3008308101 @default.
- W4210716018 cites W3038029675 @default.
- W4210716018 cites W3094171424 @default.
- W4210716018 cites W3098510716 @default.
- W4210716018 cites W3101074380 @default.
- W4210716018 cites W3112717819 @default.
- W4210716018 cites W3167954679 @default.
- W4210716018 cites W4244876172 @default.
- W4210716018 cites W4256357823 @default.
- W4210716018 doi "https://doi.org/10.1111/2041-210x.13812" @default.
- W4210716018 hasPublicationYear "2022" @default.
- W4210716018 type Work @default.
- W4210716018 citedByCount "0" @default.
- W4210716018 crossrefType "journal-article" @default.
- W4210716018 hasAuthorship W4210716018A5014184284 @default.
- W4210716018 hasAuthorship W4210716018A5042761663 @default.
- W4210716018 hasAuthorship W4210716018A5043562606 @default.
- W4210716018 hasAuthorship W4210716018A5069981883 @default.
- W4210716018 hasAuthorship W4210716018A5078531816 @default.
- W4210716018 hasAuthorship W4210716018A5086961180 @default.
- W4210716018 hasAuthorship W4210716018A5087753687 @default.
- W4210716018 hasBestOaLocation W42107160182 @default.
- W4210716018 hasConcept C105795698 @default.
- W4210716018 hasConcept C11413529 @default.
- W4210716018 hasConcept C154945302 @default.
- W4210716018 hasConcept C183121708 @default.
- W4210716018 hasConcept C18903297 @default.
- W4210716018 hasConcept C205649164 @default.
- W4210716018 hasConcept C23224414 @default.
- W4210716018 hasConcept C2778755073 @default.
- W4210716018 hasConcept C33923547 @default.
- W4210716018 hasConcept C41008148 @default.
- W4210716018 hasConcept C52918065 @default.
- W4210716018 hasConcept C58640448 @default.
- W4210716018 hasConcept C72434380 @default.
- W4210716018 hasConcept C76155785 @default.
- W4210716018 hasConcept C86803240 @default.
- W4210716018 hasConceptScore W4210716018C105795698 @default.
- W4210716018 hasConceptScore W4210716018C11413529 @default.
- W4210716018 hasConceptScore W4210716018C154945302 @default.
- W4210716018 hasConceptScore W4210716018C183121708 @default.
- W4210716018 hasConceptScore W4210716018C18903297 @default.
- W4210716018 hasConceptScore W4210716018C205649164 @default.