Matches in SemOpenAlex for { <https://semopenalex.org/work/W4210719489> ?p ?o ?g. }
- W4210719489 abstract "<sec> <title>BACKGROUND</title> Lung cancer is the leading cause of cancer death worldwide. Early detection of individuals at risk of lung cancer is critical to reduce the mortality rate. </sec> <sec> <title>OBJECTIVE</title> The aim of this study was to develop and validate a prospective risk prediction model to identify patients at risk of new incident lung cancer within the next 1 year in the general population. </sec> <sec> <title>METHODS</title> Data from individual patient electronic health records (EHRs) were extracted from the Maine Health Information Exchange network. The study population consisted of patients with at least one EHR between April 1, 2016, and March 31, 2018, who had no history of lung cancer. A retrospective cohort (N=873,598) and a prospective cohort (N=836,659) were formed for model construction and validation. An Extreme Gradient Boosting (XGBoost) algorithm was adopted to build the model. It assigned a score to each individual to quantify the probability of a new incident lung cancer diagnosis from October 1, 2016, to September 31, 2017. The model was trained with the clinical profile in the retrospective cohort from the preceding 6 months and validated with the prospective cohort to predict the risk of incident lung cancer from April 1, 2017, to March 31, 2018. </sec> <sec> <title>RESULTS</title> The model had an area under the curve (AUC) of 0.881 (95% CI 0.873-0.889) in the prospective cohort. Two thresholds of 0.0045 and 0.01 were applied to the predictive scores to stratify the population into low-, medium-, and high-risk categories. The incidence of lung cancer in the high-risk category (579/53,922, 1.07%) was 7.7 times higher than that in the overall cohort (1167/836,659, 0.14%). Age, a history of pulmonary diseases and other chronic diseases, medications for mental disorders, and social disparities were found to be associated with new incident lung cancer. </sec> <sec> <title>CONCLUSIONS</title> We retrospectively developed and prospectively validated an accurate risk prediction model of new incident lung cancer occurring in the next 1 year. Through statistical learning from the statewide EHR data in the preceding 6 months, our model was able to identify statewide high-risk patients, which will benefit the population health through establishment of preventive interventions or more intensive surveillance. </sec>" @default.
- W4210719489 created "2022-02-08" @default.
- W4210719489 creator A5005387471 @default.
- W4210719489 creator A5007573772 @default.
- W4210719489 creator A5007869312 @default.
- W4210719489 creator A5009212787 @default.
- W4210719489 creator A5013742088 @default.
- W4210719489 creator A5014513119 @default.
- W4210719489 creator A5016286047 @default.
- W4210719489 creator A5017155787 @default.
- W4210719489 creator A5029714228 @default.
- W4210719489 creator A5037430862 @default.
- W4210719489 creator A5039069271 @default.
- W4210719489 creator A5045821992 @default.
- W4210719489 creator A5061097665 @default.
- W4210719489 creator A5066855763 @default.
- W4210719489 creator A5067320192 @default.
- W4210719489 creator A5068779732 @default.
- W4210719489 creator A5074776688 @default.
- W4210719489 creator A5080843935 @default.
- W4210719489 creator A5086137872 @default.
- W4210719489 date "2018-12-31" @default.
- W4210719489 modified "2023-10-18" @default.
- W4210719489 title "Prediction of the 1-Year Risk of Incident Lung Cancer: Prospective Study Using Electronic Health Records from the State of Maine (Preprint)" @default.
- W4210719489 cites W1213336605 @default.
- W4210719489 cites W1839682376 @default.
- W4210719489 cites W1855722232 @default.
- W4210719489 cites W1998228581 @default.
- W4210719489 cites W2012944782 @default.
- W4210719489 cites W2024492396 @default.
- W4210719489 cites W2033649338 @default.
- W4210719489 cites W2065081548 @default.
- W4210719489 cites W2075747141 @default.
- W4210719489 cites W2079470858 @default.
- W4210719489 cites W2107423050 @default.
- W4210719489 cites W2112211373 @default.
- W4210719489 cites W2121593241 @default.
- W4210719489 cites W2132466331 @default.
- W4210719489 cites W2142966060 @default.
- W4210719489 cites W2144733577 @default.
- W4210719489 cites W2153983947 @default.
- W4210719489 cites W2157010377 @default.
- W4210719489 cites W2160653301 @default.
- W4210719489 cites W2163814837 @default.
- W4210719489 cites W2194457463 @default.
- W4210719489 cites W2367428707 @default.
- W4210719489 cites W2395172628 @default.
- W4210719489 cites W2555887493 @default.
- W4210719489 cites W2604950454 @default.
- W4210719489 cites W2672668855 @default.
- W4210719489 cites W2737873903 @default.
- W4210719489 cites W2750254726 @default.
- W4210719489 cites W2781525129 @default.
- W4210719489 cites W2786750066 @default.
- W4210719489 cites W2786814109 @default.
- W4210719489 cites W2788610377 @default.
- W4210719489 cites W2790816903 @default.
- W4210719489 cites W2795034591 @default.
- W4210719489 cites W2795206391 @default.
- W4210719489 cites W2915317546 @default.
- W4210719489 cites W3102476541 @default.
- W4210719489 doi "https://doi.org/10.2196/preprints.13260" @default.
- W4210719489 hasPublicationYear "2018" @default.
- W4210719489 type Work @default.
- W4210719489 citedByCount "0" @default.
- W4210719489 crossrefType "posted-content" @default.
- W4210719489 hasAuthorship W4210719489A5005387471 @default.
- W4210719489 hasAuthorship W4210719489A5007573772 @default.
- W4210719489 hasAuthorship W4210719489A5007869312 @default.
- W4210719489 hasAuthorship W4210719489A5009212787 @default.
- W4210719489 hasAuthorship W4210719489A5013742088 @default.
- W4210719489 hasAuthorship W4210719489A5014513119 @default.
- W4210719489 hasAuthorship W4210719489A5016286047 @default.
- W4210719489 hasAuthorship W4210719489A5017155787 @default.
- W4210719489 hasAuthorship W4210719489A5029714228 @default.
- W4210719489 hasAuthorship W4210719489A5037430862 @default.
- W4210719489 hasAuthorship W4210719489A5039069271 @default.
- W4210719489 hasAuthorship W4210719489A5045821992 @default.
- W4210719489 hasAuthorship W4210719489A5061097665 @default.
- W4210719489 hasAuthorship W4210719489A5066855763 @default.
- W4210719489 hasAuthorship W4210719489A5067320192 @default.
- W4210719489 hasAuthorship W4210719489A5068779732 @default.
- W4210719489 hasAuthorship W4210719489A5074776688 @default.
- W4210719489 hasAuthorship W4210719489A5080843935 @default.
- W4210719489 hasAuthorship W4210719489A5086137872 @default.
- W4210719489 hasBestOaLocation W42107194892 @default.
- W4210719489 hasConcept C121608353 @default.
- W4210719489 hasConcept C126322002 @default.
- W4210719489 hasConcept C167135981 @default.
- W4210719489 hasConcept C188816634 @default.
- W4210719489 hasConcept C201903717 @default.
- W4210719489 hasConcept C2776256026 @default.
- W4210719489 hasConcept C2908647359 @default.
- W4210719489 hasConcept C71924100 @default.
- W4210719489 hasConcept C72563966 @default.
- W4210719489 hasConcept C99454951 @default.
- W4210719489 hasConceptScore W4210719489C121608353 @default.
- W4210719489 hasConceptScore W4210719489C126322002 @default.
- W4210719489 hasConceptScore W4210719489C167135981 @default.
- W4210719489 hasConceptScore W4210719489C188816634 @default.