Matches in SemOpenAlex for { <https://semopenalex.org/work/W4210754757> ?p ?o ?g. }
- W4210754757 endingPage "238" @default.
- W4210754757 startingPage "217" @default.
- W4210754757 abstract "Summary Artificial intelligence (AI) in business processes and academic research in AI has significantly increased. However, the adoption of AI in organizational strategy is yet to be explored in extant literature. This study proposes two conceptual frameworks showing hierarchical relationships among the various drivers and barriers to AI adoption in organizational strategy. In a two‐step approach, the literature study is first done to identify eight drivers of and nine barriers to AI adoption and validated by academic and industry experts. In the second step, MICMAC (matrice d'impacts croises‐multiplication appliqúe a un classment or cross‐impact matrix multiplication applied to classification) analysis categorizes the drivers and barriers to AI adoption in organizational strategy. Total interpretive structural modeling (TISM) is developed to understand the complex and hierarchical associations among the drivers and barriers. This is the first attempt to model the drivers and barriers using a methodology like TISM, which provides a comprehensive conceptual framework with hierarchical relationships and relative importance of the drivers and barriers to AI adoption. AI solutions' decision‐making ability and accuracy are the most influential drivers that influence other driving factors. Lack of an AI adoption strategy, lack of AI talent, and lack of leadership commitment are the most significant barriers that affect other barriers. Recommendations for senior leadership are discussed to focus on the leading drivers and barriers. Also, the limitations and future research scope are addressed." @default.
- W4210754757 created "2022-02-08" @default.
- W4210754757 creator A5023867088 @default.
- W4210754757 creator A5061235109 @default.
- W4210754757 creator A5091846818 @default.
- W4210754757 date "2021-10-01" @default.
- W4210754757 modified "2023-10-17" @default.
- W4210754757 title "Modeling Drivers and Barriers of Artificial Intelligence Adoption: Insights from a Strategic Management Perspective" @default.
- W4210754757 cites W1921302649 @default.
- W4210754757 cites W1981725084 @default.
- W4210754757 cites W2005935580 @default.
- W4210754757 cites W2024524132 @default.
- W4210754757 cites W2028584993 @default.
- W4210754757 cites W2029829784 @default.
- W4210754757 cites W2035185391 @default.
- W4210754757 cites W2038650590 @default.
- W4210754757 cites W2104971230 @default.
- W4210754757 cites W2121970262 @default.
- W4210754757 cites W2132697108 @default.
- W4210754757 cites W2155853760 @default.
- W4210754757 cites W2159050200 @default.
- W4210754757 cites W2280321044 @default.
- W4210754757 cites W2338873322 @default.
- W4210754757 cites W2486557611 @default.
- W4210754757 cites W2580712957 @default.
- W4210754757 cites W2585711475 @default.
- W4210754757 cites W2587975023 @default.
- W4210754757 cites W2593949166 @default.
- W4210754757 cites W2596025987 @default.
- W4210754757 cites W2770956316 @default.
- W4210754757 cites W2777677018 @default.
- W4210754757 cites W2785373966 @default.
- W4210754757 cites W2795765787 @default.
- W4210754757 cites W2809312608 @default.
- W4210754757 cites W2809841389 @default.
- W4210754757 cites W2883422248 @default.
- W4210754757 cites W2887311010 @default.
- W4210754757 cites W2889104148 @default.
- W4210754757 cites W2890914299 @default.
- W4210754757 cites W2893740026 @default.
- W4210754757 cites W2895783924 @default.
- W4210754757 cites W2902634493 @default.
- W4210754757 cites W2903851784 @default.
- W4210754757 cites W2907016001 @default.
- W4210754757 cites W2916048747 @default.
- W4210754757 cites W2935982094 @default.
- W4210754757 cites W2949382239 @default.
- W4210754757 cites W2960630842 @default.
- W4210754757 cites W2966327746 @default.
- W4210754757 cites W2967190295 @default.
- W4210754757 cites W2972736005 @default.
- W4210754757 cites W2973813156 @default.
- W4210754757 cites W2988004178 @default.
- W4210754757 cites W2989845548 @default.
- W4210754757 cites W2993491036 @default.
- W4210754757 cites W2996159349 @default.
- W4210754757 cites W3004558629 @default.
- W4210754757 cites W3004637389 @default.
- W4210754757 cites W3006630858 @default.
- W4210754757 cites W3017620100 @default.
- W4210754757 cites W3018149462 @default.
- W4210754757 cites W3020557172 @default.
- W4210754757 cites W3025637241 @default.
- W4210754757 cites W3037880470 @default.
- W4210754757 cites W3038207736 @default.
- W4210754757 cites W3042622118 @default.
- W4210754757 cites W3042951649 @default.
- W4210754757 cites W3045550812 @default.
- W4210754757 cites W3082622239 @default.
- W4210754757 cites W3085789143 @default.
- W4210754757 cites W3096900234 @default.
- W4210754757 cites W3109432046 @default.
- W4210754757 cites W3110029639 @default.
- W4210754757 cites W3121180210 @default.
- W4210754757 cites W3124534840 @default.
- W4210754757 cites W3126911807 @default.
- W4210754757 cites W3128384299 @default.
- W4210754757 cites W3134570971 @default.
- W4210754757 cites W3137218224 @default.
- W4210754757 cites W3138465400 @default.
- W4210754757 cites W3158487060 @default.
- W4210754757 cites W3165282860 @default.
- W4210754757 cites W3168481646 @default.
- W4210754757 cites W3169924575 @default.
- W4210754757 cites W3170494682 @default.
- W4210754757 cites W3170958317 @default.
- W4210754757 cites W3175801435 @default.
- W4210754757 cites W3182057223 @default.
- W4210754757 cites W3184450910 @default.
- W4210754757 cites W3197312442 @default.
- W4210754757 cites W4247292278 @default.
- W4210754757 cites W637031290 @default.
- W4210754757 cites W972842902 @default.
- W4210754757 doi "https://doi.org/10.1002/isaf.1503" @default.
- W4210754757 hasPublicationYear "2021" @default.
- W4210754757 type Work @default.
- W4210754757 citedByCount "9" @default.
- W4210754757 countsByYear W42107547572022 @default.