Matches in SemOpenAlex for { <https://semopenalex.org/work/W4210765575> ?p ?o ?g. }
Showing items 1 to 94 of
94
with 100 items per page.
- W4210765575 abstract "<sec> <title>BACKGROUND</title> Prevention and management of chronic diseases are the main goals of national health maintenance programs. Previously widely used screening tools, such as Health Risk Appraisal, are restricted in their achievement this goal due to their limitations, such as static characteristics, accessibility, and generalizability. Hypertension is one of the most important chronic diseases requiring management via the nationwide health maintenance program, and health care providers should inform patients about their risks of a complication caused by hypertension. </sec> <sec> <title>OBJECTIVE</title> Our goal was to develop and compare machine learning models predicting high-risk vascular diseases for hypertensive patients so that they can manage their blood pressure based on their risk level. </sec> <sec> <title>METHODS</title> We used a 12-year longitudinal dataset of the nationwide sample cohort, which contains the data of 514,866 patients and allows tracking of patients’ medical history across all health care providers in Korea (N=51,920). To ensure the generalizability of our models, we conducted an external validation using another national sample cohort dataset, comprising one million different patients, published by the National Health Insurance Service. From each dataset, we obtained the data of 74,535 and 59,738 patients with essential hypertension and developed machine learning models for predicting cardiovascular and cerebrovascular events. Six machine learning models were developed and compared for evaluating performances based on validation metrics. </sec> <sec> <title>RESULTS</title> Machine learning algorithms enabled us to detect high-risk patients based on their medical history. The long short-term memory-based algorithm outperformed in the within test (F1-score=.772, external test F1-score=.613), and the random forest-based algorithm of risk prediction showed better performance over other machine learning algorithms concerning generalization (within test F1-score=.757, external test F1-score=.705). Concerning the number of features, in the within test, the long short-term memory-based algorithms outperformed regardless of the number of features. However, in the external test, the random forest-based algorithm was the best, irrespective of the number of features it encountered. </sec> <sec> <title>CONCLUSIONS</title> We developed and compared machine learning models predicting high-risk vascular diseases in hypertensive patients so that they may manage their blood pressure based on their risk level. By relying on the prediction model, a government can predict high-risk patients at the nationwide level and establish health care policies in advance. </sec>" @default.
- W4210765575 created "2022-02-08" @default.
- W4210765575 creator A5021354255 @default.
- W4210765575 creator A5021932448 @default.
- W4210765575 creator A5025936404 @default.
- W4210765575 creator A5060134115 @default.
- W4210765575 creator A5064922037 @default.
- W4210765575 creator A5068195598 @default.
- W4210765575 date "2018-08-02" @default.
- W4210765575 modified "2023-09-29" @default.
- W4210765575 title "Patient-Level Prediction of Cardio-Cerebrovascular Events in Hypertension Using Nationwide Claims Data (Preprint)" @default.
- W4210765575 cites W1967211424 @default.
- W4210765575 cites W1976259672 @default.
- W4210765575 cites W1986783669 @default.
- W4210765575 cites W2003965261 @default.
- W4210765575 cites W2068473645 @default.
- W4210765575 cites W2080983906 @default.
- W4210765575 cites W2083045667 @default.
- W4210765575 cites W2084164487 @default.
- W4210765575 cites W2099849803 @default.
- W4210765575 cites W2113983143 @default.
- W4210765575 cites W2137532674 @default.
- W4210765575 cites W2233407703 @default.
- W4210765575 cites W2268155353 @default.
- W4210765575 cites W2299875381 @default.
- W4210765575 cites W2341326607 @default.
- W4210765575 cites W2395172628 @default.
- W4210765575 cites W2402203869 @default.
- W4210765575 cites W2504981678 @default.
- W4210765575 cites W2518582440 @default.
- W4210765575 cites W2565707232 @default.
- W4210765575 cites W2605253636 @default.
- W4210765575 cites W2739220786 @default.
- W4210765575 cites W2757321799 @default.
- W4210765575 cites W2767812922 @default.
- W4210765575 cites W2786814109 @default.
- W4210765575 cites W2802250559 @default.
- W4210765575 doi "https://doi.org/10.2196/preprints.11757" @default.
- W4210765575 hasPublicationYear "2018" @default.
- W4210765575 type Work @default.
- W4210765575 citedByCount "0" @default.
- W4210765575 crossrefType "posted-content" @default.
- W4210765575 hasAuthorship W4210765575A5021354255 @default.
- W4210765575 hasAuthorship W4210765575A5021932448 @default.
- W4210765575 hasAuthorship W4210765575A5025936404 @default.
- W4210765575 hasAuthorship W4210765575A5060134115 @default.
- W4210765575 hasAuthorship W4210765575A5064922037 @default.
- W4210765575 hasAuthorship W4210765575A5068195598 @default.
- W4210765575 hasBestOaLocation W42107655752 @default.
- W4210765575 hasConcept C126322002 @default.
- W4210765575 hasConcept C138496976 @default.
- W4210765575 hasConcept C15744967 @default.
- W4210765575 hasConcept C160735492 @default.
- W4210765575 hasConcept C162324750 @default.
- W4210765575 hasConcept C185592680 @default.
- W4210765575 hasConcept C198531522 @default.
- W4210765575 hasConcept C27158222 @default.
- W4210765575 hasConcept C41008148 @default.
- W4210765575 hasConcept C43617362 @default.
- W4210765575 hasConcept C50522688 @default.
- W4210765575 hasConcept C71924100 @default.
- W4210765575 hasConcept C72563966 @default.
- W4210765575 hasConcept C84393581 @default.
- W4210765575 hasConceptScore W4210765575C126322002 @default.
- W4210765575 hasConceptScore W4210765575C138496976 @default.
- W4210765575 hasConceptScore W4210765575C15744967 @default.
- W4210765575 hasConceptScore W4210765575C160735492 @default.
- W4210765575 hasConceptScore W4210765575C162324750 @default.
- W4210765575 hasConceptScore W4210765575C185592680 @default.
- W4210765575 hasConceptScore W4210765575C198531522 @default.
- W4210765575 hasConceptScore W4210765575C27158222 @default.
- W4210765575 hasConceptScore W4210765575C41008148 @default.
- W4210765575 hasConceptScore W4210765575C43617362 @default.
- W4210765575 hasConceptScore W4210765575C50522688 @default.
- W4210765575 hasConceptScore W4210765575C71924100 @default.
- W4210765575 hasConceptScore W4210765575C72563966 @default.
- W4210765575 hasConceptScore W4210765575C84393581 @default.
- W4210765575 hasLocation W42107655751 @default.
- W4210765575 hasLocation W42107655752 @default.
- W4210765575 hasOpenAccess W4210765575 @default.
- W4210765575 hasPrimaryLocation W42107655751 @default.
- W4210765575 hasRelatedWork W2059032148 @default.
- W4210765575 hasRelatedWork W2081104306 @default.
- W4210765575 hasRelatedWork W2142080560 @default.
- W4210765575 hasRelatedWork W2335656962 @default.
- W4210765575 hasRelatedWork W2350413865 @default.
- W4210765575 hasRelatedWork W2410619761 @default.
- W4210765575 hasRelatedWork W2435813912 @default.
- W4210765575 hasRelatedWork W2603773853 @default.
- W4210765575 hasRelatedWork W2756165188 @default.
- W4210765575 hasRelatedWork W2759393397 @default.
- W4210765575 isParatext "false" @default.
- W4210765575 isRetracted "false" @default.
- W4210765575 workType "article" @default.