Matches in SemOpenAlex for { <https://semopenalex.org/work/W4210775104> ?p ?o ?g. }
- W4210775104 endingPage "39972" @default.
- W4210775104 startingPage "39948" @default.
- W4210775104 abstract "Road traffic vehicular noise is one of the main sources of environmental pollution in urban areas of India. Also, steadily increasing urbanization, industrialization, infrastructures around city condition causes health risks among the urban populations. In this study, we have explored noise descriptors (L10, L90, Ldn, LNI, TNI, NC), contour plotting and find the suitability of artificial neural networks (ANN) for the prediction of traffic noise all around the Dhanbad township in 15 monitoring stations. In order to develop the prediction model, measuring noise levels of five different hours, speed of vehicles, and traffic volume in every monitoring point have been studied and analyzed. Traffic volume, percent of heavy vehicles, speed, traffic flow, road gradient, pavement, road side carriageway distance factors were taken as input parameter, whereas LAeq as output parameter for formation of neural network architecture. As traffic flow is heterogenous which mainly contains 59%, two wheelers and different vehicle specifications with varying speeds also affect driving and honking behavior which constantly changing noise characteristics. From radial noise diagrams shown that average noise levels of all the stations beyond permissible limit and the highest noise levels were found at the speed of 50-55 km/h in both peak and non-peak hours. Noise descriptors clearly indicate high annoyance level in the study area. Artificial neural network with 7-7-5 formation has been developed and found as optimum due to its sum of square and overall relative error 0.858 and .029 in training and 0.458 and 0.862 in testing phase respectively. Comparative analysis between observed and predicted noise level shows very less deviation up to ± 0.6 dB(A) and the R2 linear values are more than 0.9 in all five noise hours indicating the accuracy of model. Also, it can be concluded that ANN approach is much superior in prediction of traffic noise level to any other statistical method." @default.
- W4210775104 created "2022-02-08" @default.
- W4210775104 creator A5041632401 @default.
- W4210775104 creator A5045344164 @default.
- W4210775104 creator A5052864488 @default.
- W4210775104 date "2022-02-03" @default.
- W4210775104 modified "2023-10-14" @default.
- W4210775104 title "Vehicular traffic noise modelling of urban area—a contouring and artificial neural network based approach" @default.
- W4210775104 cites W1495725680 @default.
- W4210775104 cites W1875626450 @default.
- W4210775104 cites W1975130667 @default.
- W4210775104 cites W1977408156 @default.
- W4210775104 cites W1980104488 @default.
- W4210775104 cites W1991426255 @default.
- W4210775104 cites W1998118640 @default.
- W4210775104 cites W1999384480 @default.
- W4210775104 cites W2003656899 @default.
- W4210775104 cites W2004053902 @default.
- W4210775104 cites W2005436527 @default.
- W4210775104 cites W2005546834 @default.
- W4210775104 cites W2010973889 @default.
- W4210775104 cites W2012392502 @default.
- W4210775104 cites W2014645256 @default.
- W4210775104 cites W2014704665 @default.
- W4210775104 cites W2036785686 @default.
- W4210775104 cites W2058900675 @default.
- W4210775104 cites W2061521761 @default.
- W4210775104 cites W2064631081 @default.
- W4210775104 cites W2068825805 @default.
- W4210775104 cites W2075913921 @default.
- W4210775104 cites W2093359082 @default.
- W4210775104 cites W2094721506 @default.
- W4210775104 cites W2097598223 @default.
- W4210775104 cites W2112206060 @default.
- W4210775104 cites W2157796300 @default.
- W4210775104 cites W2190353863 @default.
- W4210775104 cites W2222655911 @default.
- W4210775104 cites W2233072565 @default.
- W4210775104 cites W2284721123 @default.
- W4210775104 cites W2332821928 @default.
- W4210775104 cites W2339206517 @default.
- W4210775104 cites W2342643507 @default.
- W4210775104 cites W2346123551 @default.
- W4210775104 cites W2484371939 @default.
- W4210775104 cites W2514056866 @default.
- W4210775104 cites W2605710802 @default.
- W4210775104 cites W2607385681 @default.
- W4210775104 cites W2735669322 @default.
- W4210775104 cites W2743500757 @default.
- W4210775104 cites W2754193229 @default.
- W4210775104 cites W2760746259 @default.
- W4210775104 cites W2761777029 @default.
- W4210775104 cites W2762841950 @default.
- W4210775104 cites W2765928312 @default.
- W4210775104 cites W2789727163 @default.
- W4210775104 cites W2792651784 @default.
- W4210775104 cites W2793571342 @default.
- W4210775104 cites W2795193075 @default.
- W4210775104 cites W2883567977 @default.
- W4210775104 cites W2884311354 @default.
- W4210775104 cites W2892595493 @default.
- W4210775104 cites W2897164504 @default.
- W4210775104 cites W2961531191 @default.
- W4210775104 cites W2963123137 @default.
- W4210775104 cites W2982007115 @default.
- W4210775104 cites W2990245557 @default.
- W4210775104 cites W2993166948 @default.
- W4210775104 cites W2996168212 @default.
- W4210775104 cites W3007596008 @default.
- W4210775104 cites W3009423739 @default.
- W4210775104 cites W3009605188 @default.
- W4210775104 cites W3040382224 @default.
- W4210775104 cites W3118955945 @default.
- W4210775104 cites W3134263144 @default.
- W4210775104 cites W3165872111 @default.
- W4210775104 cites W3174712016 @default.
- W4210775104 cites W3178200871 @default.
- W4210775104 cites W3197719401 @default.
- W4210775104 cites W2933601201 @default.
- W4210775104 doi "https://doi.org/10.1007/s11356-021-17577-1" @default.
- W4210775104 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35112254" @default.
- W4210775104 hasPublicationYear "2022" @default.
- W4210775104 type Work @default.
- W4210775104 citedByCount "5" @default.
- W4210775104 countsByYear W42107751042022 @default.
- W4210775104 countsByYear W42107751042023 @default.
- W4210775104 crossrefType "journal-article" @default.
- W4210775104 hasAuthorship W4210775104A5041632401 @default.
- W4210775104 hasAuthorship W4210775104A5045344164 @default.
- W4210775104 hasAuthorship W4210775104A5052864488 @default.
- W4210775104 hasBestOaLocation W42107751042 @default.
- W4210775104 hasConcept C105795698 @default.
- W4210775104 hasConcept C115961682 @default.
- W4210775104 hasConcept C127413603 @default.
- W4210775104 hasConcept C130858481 @default.
- W4210775104 hasConcept C154945302 @default.
- W4210775104 hasConcept C163294075 @default.
- W4210775104 hasConcept C207512268 @default.