Matches in SemOpenAlex for { <https://semopenalex.org/work/W4210786828> ?p ?o ?g. }
Showing items 1 to 82 of
82
with 100 items per page.
- W4210786828 abstract "<sec> <title>BACKGROUND</title> The study of adverse drug events (ADEs) is a tenured topic in medical literature. In recent years, increasing numbers of scientific articles and health-related social media posts have been generated and shared daily, albeit with very limited use for ADE study and with little known about the content with respect to ADEs. </sec> <sec> <title>OBJECTIVE</title> The aim of this study was to develop a big data analytics strategy that mines the content of scientific articles and health-related Web-based social media to detect and identify ADEs. </sec> <sec> <title>METHODS</title> We analyzed the following two data sources: (1) biomedical articles and (2) health-related social media blog posts. We developed an intelligent and scalable text mining solution on big data infrastructures composed of Apache Spark, natural language processing, and machine learning. This was combined with an Elasticsearch No-SQL distributed database to explore and visualize ADEs. </sec> <sec> <title>RESULTS</title> The accuracy, precision, recall, and area under receiver operating characteristic of the system were 92.7%, 93.6%, 93.0%, and 0.905, respectively, and showed better results in comparison with traditional approaches in the literature. This work not only detected and classified ADE sentences from big data biomedical literature but also scientifically visualized ADE interactions. </sec> <sec> <title>CONCLUSIONS</title> To the best of our knowledge, this work is the first to investigate a big data machine learning strategy for ADE discovery on massive datasets downloaded from PubMed Central and social media. This contribution illustrates possible capacities in big data biomedical text analysis using advanced computational methods with real-time update from new data published on a daily basis. </sec>" @default.
- W4210786828 created "2022-02-08" @default.
- W4210786828 creator A5041944660 @default.
- W4210786828 creator A5053486176 @default.
- W4210786828 creator A5057230789 @default.
- W4210786828 creator A5063214221 @default.
- W4210786828 creator A5064595172 @default.
- W4210786828 creator A5067918441 @default.
- W4210786828 creator A5068251706 @default.
- W4210786828 creator A5072548692 @default.
- W4210786828 creator A5088183118 @default.
- W4210786828 date "2017-10-13" @default.
- W4210786828 modified "2023-09-25" @default.
- W4210786828 title "Adverse Drug Event Discovery Using Biomedical Literature: A Big Data Neural Network Adventure (Preprint)" @default.
- W4210786828 cites W1152166452 @default.
- W4210786828 cites W1971048089 @default.
- W4210786828 cites W2059039116 @default.
- W4210786828 cites W2118882175 @default.
- W4210786828 cites W2138768461 @default.
- W4210786828 cites W2169775710 @default.
- W4210786828 cites W2415373024 @default.
- W4210786828 cites W2558970627 @default.
- W4210786828 doi "https://doi.org/10.2196/preprints.9170" @default.
- W4210786828 hasPublicationYear "2017" @default.
- W4210786828 type Work @default.
- W4210786828 citedByCount "0" @default.
- W4210786828 crossrefType "posted-content" @default.
- W4210786828 hasAuthorship W4210786828A5041944660 @default.
- W4210786828 hasAuthorship W4210786828A5053486176 @default.
- W4210786828 hasAuthorship W4210786828A5057230789 @default.
- W4210786828 hasAuthorship W4210786828A5063214221 @default.
- W4210786828 hasAuthorship W4210786828A5064595172 @default.
- W4210786828 hasAuthorship W4210786828A5067918441 @default.
- W4210786828 hasAuthorship W4210786828A5068251706 @default.
- W4210786828 hasAuthorship W4210786828A5072548692 @default.
- W4210786828 hasAuthorship W4210786828A5088183118 @default.
- W4210786828 hasBestOaLocation W42107868282 @default.
- W4210786828 hasConcept C124101348 @default.
- W4210786828 hasConcept C136764020 @default.
- W4210786828 hasConcept C154945302 @default.
- W4210786828 hasConcept C199360897 @default.
- W4210786828 hasConcept C23123220 @default.
- W4210786828 hasConcept C2522767166 @default.
- W4210786828 hasConcept C2781215313 @default.
- W4210786828 hasConcept C41008148 @default.
- W4210786828 hasConcept C43169469 @default.
- W4210786828 hasConcept C48044578 @default.
- W4210786828 hasConcept C518677369 @default.
- W4210786828 hasConcept C75684735 @default.
- W4210786828 hasConcept C77088390 @default.
- W4210786828 hasConcept C79158427 @default.
- W4210786828 hasConceptScore W4210786828C124101348 @default.
- W4210786828 hasConceptScore W4210786828C136764020 @default.
- W4210786828 hasConceptScore W4210786828C154945302 @default.
- W4210786828 hasConceptScore W4210786828C199360897 @default.
- W4210786828 hasConceptScore W4210786828C23123220 @default.
- W4210786828 hasConceptScore W4210786828C2522767166 @default.
- W4210786828 hasConceptScore W4210786828C2781215313 @default.
- W4210786828 hasConceptScore W4210786828C41008148 @default.
- W4210786828 hasConceptScore W4210786828C43169469 @default.
- W4210786828 hasConceptScore W4210786828C48044578 @default.
- W4210786828 hasConceptScore W4210786828C518677369 @default.
- W4210786828 hasConceptScore W4210786828C75684735 @default.
- W4210786828 hasConceptScore W4210786828C77088390 @default.
- W4210786828 hasConceptScore W4210786828C79158427 @default.
- W4210786828 hasLocation W42107868281 @default.
- W4210786828 hasLocation W42107868282 @default.
- W4210786828 hasOpenAccess W4210786828 @default.
- W4210786828 hasPrimaryLocation W42107868281 @default.
- W4210786828 hasRelatedWork W2186499617 @default.
- W4210786828 hasRelatedWork W2499073664 @default.
- W4210786828 hasRelatedWork W2752106475 @default.
- W4210786828 hasRelatedWork W2759339464 @default.
- W4210786828 hasRelatedWork W2769430831 @default.
- W4210786828 hasRelatedWork W2993053943 @default.
- W4210786828 hasRelatedWork W3109375702 @default.
- W4210786828 hasRelatedWork W3171536469 @default.
- W4210786828 hasRelatedWork W3177086633 @default.
- W4210786828 hasRelatedWork W4299638067 @default.
- W4210786828 isParatext "false" @default.
- W4210786828 isRetracted "false" @default.
- W4210786828 workType "article" @default.