Matches in SemOpenAlex for { <https://semopenalex.org/work/W4210807862> ?p ?o ?g. }
- W4210807862 endingPage "285" @default.
- W4210807862 startingPage "270" @default.
- W4210807862 abstract "Recently, deep learning models proliferate in the prediction of power demand for efficient planning of power consumption. However, the “black-box” characteristics of deep learning hinders from establishing a specific plan because it cannot explain the cause of the prediction. Recently, there are several attempts to explain the result of deep learning through the analysis of the input attributes that influence the prediction, but they lack of appropriate explanation because of ignoring the time-series property of the input data. In this paper, we propose a deep learning model to explain the impact of the input attributes on the prediction by taking account of the long-term and short-term properties of the time-series forecasting. The model consists of (i) two encoders to represent the power information for prediction and explanation, (ii) a decoder to predict the power demand from the concatenated outputs of encoders, and (iii) an explainer to identify the most significant attributes for predicting the energy consumption. Kullback–Leibler divergence in the loss function induces the long-term and short-term dependencies in latent space constructed by the second encoder. Several experiments on the benchmark dataset of household electric energy demand show that the proposed method explains the prediction appropriately with the most influential input attributes in the long-term and short-term dependencies. We can trade off the gain of the time-series explanation of the result against a slight degradation of the prediction performance." @default.
- W4210807862 created "2022-02-08" @default.
- W4210807862 creator A5043486744 @default.
- W4210807862 creator A5044514062 @default.
- W4210807862 date "2022-01-31" @default.
- W4210807862 modified "2023-10-16" @default.
- W4210807862 title "Predicting Residential Energy Consumption by Explainable Deep Learning with Long-Term and Short-Term Latent Variables" @default.
- W4210807862 cites W1928278792 @default.
- W4210807862 cites W1977781130 @default.
- W4210807862 cites W1988434901 @default.
- W4210807862 cites W1997276660 @default.
- W4210807862 cites W2000548672 @default.
- W4210807862 cites W2008668719 @default.
- W4210807862 cites W2031110929 @default.
- W4210807862 cites W2044078521 @default.
- W4210807862 cites W2051447517 @default.
- W4210807862 cites W2064675550 @default.
- W4210807862 cites W2085497044 @default.
- W4210807862 cites W2114534220 @default.
- W4210807862 cites W2122538988 @default.
- W4210807862 cites W2143388661 @default.
- W4210807862 cites W2282821441 @default.
- W4210807862 cites W2293078015 @default.
- W4210807862 cites W2605614336 @default.
- W4210807862 cites W2752904048 @default.
- W4210807862 cites W2763500568 @default.
- W4210807862 cites W2765397225 @default.
- W4210807862 cites W2804769055 @default.
- W4210807862 cites W2915736901 @default.
- W4210807862 cites W2948490758 @default.
- W4210807862 cites W2960959326 @default.
- W4210807862 cites W2965543987 @default.
- W4210807862 cites W2979947165 @default.
- W4210807862 cites W2989662274 @default.
- W4210807862 cites W3001120888 @default.
- W4210807862 cites W3116956136 @default.
- W4210807862 cites W3129903193 @default.
- W4210807862 cites W3198406831 @default.
- W4210807862 cites W4240922739 @default.
- W4210807862 doi "https://doi.org/10.1080/01969722.2022.2030003" @default.
- W4210807862 hasPublicationYear "2022" @default.
- W4210807862 type Work @default.
- W4210807862 citedByCount "1" @default.
- W4210807862 countsByYear W42108078622023 @default.
- W4210807862 crossrefType "journal-article" @default.
- W4210807862 hasAuthorship W4210807862A5043486744 @default.
- W4210807862 hasAuthorship W4210807862A5044514062 @default.
- W4210807862 hasConcept C108583219 @default.
- W4210807862 hasConcept C111919701 @default.
- W4210807862 hasConcept C118505674 @default.
- W4210807862 hasConcept C119857082 @default.
- W4210807862 hasConcept C121332964 @default.
- W4210807862 hasConcept C13280743 @default.
- W4210807862 hasConcept C138885662 @default.
- W4210807862 hasConcept C14036430 @default.
- W4210807862 hasConcept C144024400 @default.
- W4210807862 hasConcept C151406439 @default.
- W4210807862 hasConcept C154945302 @default.
- W4210807862 hasConcept C185798385 @default.
- W4210807862 hasConcept C205649164 @default.
- W4210807862 hasConcept C207390915 @default.
- W4210807862 hasConcept C30772137 @default.
- W4210807862 hasConcept C36289849 @default.
- W4210807862 hasConcept C41008148 @default.
- W4210807862 hasConcept C41895202 @default.
- W4210807862 hasConcept C61797465 @default.
- W4210807862 hasConcept C62520636 @default.
- W4210807862 hasConcept C78458016 @default.
- W4210807862 hasConcept C86803240 @default.
- W4210807862 hasConceptScore W4210807862C108583219 @default.
- W4210807862 hasConceptScore W4210807862C111919701 @default.
- W4210807862 hasConceptScore W4210807862C118505674 @default.
- W4210807862 hasConceptScore W4210807862C119857082 @default.
- W4210807862 hasConceptScore W4210807862C121332964 @default.
- W4210807862 hasConceptScore W4210807862C13280743 @default.
- W4210807862 hasConceptScore W4210807862C138885662 @default.
- W4210807862 hasConceptScore W4210807862C14036430 @default.
- W4210807862 hasConceptScore W4210807862C144024400 @default.
- W4210807862 hasConceptScore W4210807862C151406439 @default.
- W4210807862 hasConceptScore W4210807862C154945302 @default.
- W4210807862 hasConceptScore W4210807862C185798385 @default.
- W4210807862 hasConceptScore W4210807862C205649164 @default.
- W4210807862 hasConceptScore W4210807862C207390915 @default.
- W4210807862 hasConceptScore W4210807862C30772137 @default.
- W4210807862 hasConceptScore W4210807862C36289849 @default.
- W4210807862 hasConceptScore W4210807862C41008148 @default.
- W4210807862 hasConceptScore W4210807862C41895202 @default.
- W4210807862 hasConceptScore W4210807862C61797465 @default.
- W4210807862 hasConceptScore W4210807862C62520636 @default.
- W4210807862 hasConceptScore W4210807862C78458016 @default.
- W4210807862 hasConceptScore W4210807862C86803240 @default.
- W4210807862 hasFunder F4320328359 @default.
- W4210807862 hasIssue "3" @default.
- W4210807862 hasLocation W42108078621 @default.
- W4210807862 hasOpenAccess W4210807862 @default.
- W4210807862 hasPrimaryLocation W42108078621 @default.
- W4210807862 hasRelatedWork W2028665553 @default.
- W4210807862 hasRelatedWork W2086519370 @default.