Matches in SemOpenAlex for { <https://semopenalex.org/work/W4210813757> ?p ?o ?g. }
- W4210813757 endingPage "239" @default.
- W4210813757 startingPage "228" @default.
- W4210813757 abstract "The changes in near-surface wind speed (NWS) have a crucial influence on the wind power industry, and previous studies have indicated that NWS on global and China has declined continuously for decades under global warming. However, recently, the decreasing trend of global NWS has slowed down and even showed a recovery trend. Using the observation data of 831 weather stations of the China Meteorological Administration and the Japanese 55-year reanalysis data from 1970 to 2019, NWS changes in eastern China were analyzed and the possible influencing factors were discussed. Results show that winter NWS presented a decreasing trend from −0.29 m s−1 per decade (p < 0.001) in 1970–1989 to −0.05 m s−1 per decade (p < 0.01) in 1990–2019. Moreover, NWS exhibited a significant upward trend of 0.18 m s−1 per decade (p < 0.1) in 2011–2019, resulting in a 19.6% per decade recovery of the wind power generation. A possible cause is asymmetric changes of the sea level pressure and near-surface air temperature differences between the mid-high latitudes (40°–60°N, 80°–120°E) and low latitudes (20°–40°N, 110°–140°E) altered the horizontal air pressure gradient. Furthermore, NWS changes were closely associated with the large-scale ocean-atmosphere circulations (LOACs). NWS at 77.4% of the stations in eastern China shows significant correlation (p < 0.05) with the East Asian winter monsoon index, besides, the inter/multidecadal variability of NWS was considerably correlated to four LOACs, including Arctic oscillation (AO), North Atlantic oscillation (NAO), Pacific decadal oscillation (PDO), and El Niño–Southern Oscillation (ENSO). The time-series reconstructed by a multiple linear regression model based on above five LOACs matches well with the NWS. Interannual variability of NWS were significantly correlated to AO (−0.45, p < 0.01) and NAO (−0.28, p < 0.05), while the correlation between NWS and ENSO was weak." @default.
- W4210813757 created "2022-02-08" @default.
- W4210813757 creator A5015640141 @default.
- W4210813757 creator A5024505724 @default.
- W4210813757 creator A5039952647 @default.
- W4210813757 creator A5052849202 @default.
- W4210813757 date "2022-04-01" @default.
- W4210813757 modified "2023-10-18" @default.
- W4210813757 title "Near-surface wind speed changes in eastern China during 1970–2019 winter and its possible causes" @default.
- W4210813757 cites W1219714425 @default.
- W4210813757 cites W1534840979 @default.
- W4210813757 cites W1805488584 @default.
- W4210813757 cites W1974194630 @default.
- W4210813757 cites W1992694399 @default.
- W4210813757 cites W1993525836 @default.
- W4210813757 cites W1998375465 @default.
- W4210813757 cites W2020297738 @default.
- W4210813757 cites W2021563134 @default.
- W4210813757 cites W2024234211 @default.
- W4210813757 cites W2028416589 @default.
- W4210813757 cites W2031072587 @default.
- W4210813757 cites W2054537340 @default.
- W4210813757 cites W2054960486 @default.
- W4210813757 cites W2068514784 @default.
- W4210813757 cites W2081591623 @default.
- W4210813757 cites W2093401535 @default.
- W4210813757 cites W2095524090 @default.
- W4210813757 cites W2115095373 @default.
- W4210813757 cites W2115281679 @default.
- W4210813757 cites W2133532314 @default.
- W4210813757 cites W2151377141 @default.
- W4210813757 cites W2175808424 @default.
- W4210813757 cites W2176774719 @default.
- W4210813757 cites W2268544346 @default.
- W4210813757 cites W2311918791 @default.
- W4210813757 cites W2474053528 @default.
- W4210813757 cites W2523297370 @default.
- W4210813757 cites W2605247195 @default.
- W4210813757 cites W2767933121 @default.
- W4210813757 cites W2769992620 @default.
- W4210813757 cites W2784114062 @default.
- W4210813757 cites W2794592236 @default.
- W4210813757 cites W2797684367 @default.
- W4210813757 cites W2885239389 @default.
- W4210813757 cites W2913552474 @default.
- W4210813757 cites W2923288178 @default.
- W4210813757 cites W2934561547 @default.
- W4210813757 cites W2964729981 @default.
- W4210813757 cites W2969862704 @default.
- W4210813757 cites W2978502595 @default.
- W4210813757 cites W3006073914 @default.
- W4210813757 cites W3127507685 @default.
- W4210813757 cites W3127538066 @default.
- W4210813757 doi "https://doi.org/10.1016/j.accre.2022.01.003" @default.
- W4210813757 hasPublicationYear "2022" @default.
- W4210813757 type Work @default.
- W4210813757 citedByCount "5" @default.
- W4210813757 countsByYear W42108137572022 @default.
- W4210813757 countsByYear W42108137572023 @default.
- W4210813757 crossrefType "journal-article" @default.
- W4210813757 hasAuthorship W4210813757A5015640141 @default.
- W4210813757 hasAuthorship W4210813757A5024505724 @default.
- W4210813757 hasAuthorship W4210813757A5039952647 @default.
- W4210813757 hasAuthorship W4210813757A5052849202 @default.
- W4210813757 hasBestOaLocation W42108137571 @default.
- W4210813757 hasConcept C107054158 @default.
- W4210813757 hasConcept C111368507 @default.
- W4210813757 hasConcept C115343472 @default.
- W4210813757 hasConcept C122523270 @default.
- W4210813757 hasConcept C127313418 @default.
- W4210813757 hasConcept C132651083 @default.
- W4210813757 hasConcept C13280743 @default.
- W4210813757 hasConcept C134097258 @default.
- W4210813757 hasConcept C153294291 @default.
- W4210813757 hasConcept C161067210 @default.
- W4210813757 hasConcept C166957645 @default.
- W4210813757 hasConcept C191935318 @default.
- W4210813757 hasConcept C205649164 @default.
- W4210813757 hasConcept C2994323764 @default.
- W4210813757 hasConcept C39432304 @default.
- W4210813757 hasConcept C49204034 @default.
- W4210813757 hasConcept C76775654 @default.
- W4210813757 hasConcept C91586092 @default.
- W4210813757 hasConceptScore W4210813757C107054158 @default.
- W4210813757 hasConceptScore W4210813757C111368507 @default.
- W4210813757 hasConceptScore W4210813757C115343472 @default.
- W4210813757 hasConceptScore W4210813757C122523270 @default.
- W4210813757 hasConceptScore W4210813757C127313418 @default.
- W4210813757 hasConceptScore W4210813757C132651083 @default.
- W4210813757 hasConceptScore W4210813757C13280743 @default.
- W4210813757 hasConceptScore W4210813757C134097258 @default.
- W4210813757 hasConceptScore W4210813757C153294291 @default.
- W4210813757 hasConceptScore W4210813757C161067210 @default.
- W4210813757 hasConceptScore W4210813757C166957645 @default.
- W4210813757 hasConceptScore W4210813757C191935318 @default.
- W4210813757 hasConceptScore W4210813757C205649164 @default.
- W4210813757 hasConceptScore W4210813757C2994323764 @default.
- W4210813757 hasConceptScore W4210813757C39432304 @default.