Matches in SemOpenAlex for { <https://semopenalex.org/work/W4210838741> ?p ?o ?g. }
- W4210838741 endingPage "10818" @default.
- W4210838741 startingPage "10798" @default.
- W4210838741 abstract "With the rising development of imaging spectroscopy, there is an increase in demand for images with high spectral, spatial, and temporal resolution. This study proposes a reconstruction from low spectral resolution multispectral imagery to higher spectral resolution hyperspectral imagery to overcome the problem of low spatial resolution and less availability of multi-temporal hyperspectral images. This study proposes a novel approach to dictionary learning based on nonlinear unmixing for dense mixtures and linear unmixing for sparse mixtures. Additionally, least square-based sparse coding has been applied in this framework to reconstruct high-resolution spectra from low-resolution spectra. The proposed method has been implemented on standard as well as real datasets and the performance of reconstruction has been validated through parametric techniques. The proposed method has been compared with states of the art methods like Joint Sparse & Low-Ranking Method and Derivative based Learning Method and it is observed that the proposed method outperforms the other methods. Nonlinear Spectral Unmixing has been performed and classification accuracy has been assessed on regenerated image data and observed to produce satisfactory output. In this study, the regenerated high spectral resolution image has been used for species-level classification and mapping of pure and mixed patches of mangrove species and the output compared with the Hyperion hyperspectral dataset of Henry Island, Sunderbans, India. Similarly, the proposed algorithm has also been applied on the Indian Pines, Salinas, Cuprite and Jasper Ridge datasets and the regenerated high spectral resolution images have been used for subpixel level target detection and classification." @default.
- W4210838741 created "2022-02-09" @default.
- W4210838741 creator A5016754640 @default.
- W4210838741 creator A5085901576 @default.
- W4210838741 date "2022-02-25" @default.
- W4210838741 modified "2023-09-30" @default.
- W4210838741 title "Reconstruction of high spectral resolution multispectral image using dictionary-based learning and sparse coding" @default.
- W4210838741 cites W126111323 @default.
- W4210838741 cites W1985047276 @default.
- W4210838741 cites W1989655334 @default.
- W4210838741 cites W1990231296 @default.
- W4210838741 cites W2018850895 @default.
- W4210838741 cites W2023518723 @default.
- W4210838741 cites W2053514113 @default.
- W4210838741 cites W2067979945 @default.
- W4210838741 cites W2070658969 @default.
- W4210838741 cites W2097622337 @default.
- W4210838741 cites W2118833492 @default.
- W4210838741 cites W2159689645 @default.
- W4210838741 cites W2221899823 @default.
- W4210838741 cites W2314528731 @default.
- W4210838741 cites W2327302159 @default.
- W4210838741 cites W2414015982 @default.
- W4210838741 cites W2520430674 @default.
- W4210838741 cites W2543104593 @default.
- W4210838741 cites W2548343907 @default.
- W4210838741 cites W2601349911 @default.
- W4210838741 cites W2735981770 @default.
- W4210838741 cites W2809879790 @default.
- W4210838741 cites W2885785305 @default.
- W4210838741 cites W2889610475 @default.
- W4210838741 cites W2890344598 @default.
- W4210838741 cites W2897962879 @default.
- W4210838741 cites W2911419410 @default.
- W4210838741 cites W2939570633 @default.
- W4210838741 cites W2963947695 @default.
- W4210838741 cites W2970645661 @default.
- W4210838741 cites W2977355106 @default.
- W4210838741 cites W2988114888 @default.
- W4210838741 cites W2996478649 @default.
- W4210838741 cites W3008439211 @default.
- W4210838741 cites W3047443805 @default.
- W4210838741 cites W3048631361 @default.
- W4210838741 cites W3101640299 @default.
- W4210838741 cites W3103294617 @default.
- W4210838741 cites W3104313739 @default.
- W4210838741 cites W3105021316 @default.
- W4210838741 cites W3197357911 @default.
- W4210838741 cites W4206310440 @default.
- W4210838741 doi "https://doi.org/10.1080/10106049.2022.2040601" @default.
- W4210838741 hasPublicationYear "2022" @default.
- W4210838741 type Work @default.
- W4210838741 citedByCount "1" @default.
- W4210838741 countsByYear W42108387412023 @default.
- W4210838741 crossrefType "journal-article" @default.
- W4210838741 hasAuthorship W4210838741A5016754640 @default.
- W4210838741 hasAuthorship W4210838741A5085901576 @default.
- W4210838741 hasConcept C124066611 @default.
- W4210838741 hasConcept C153180895 @default.
- W4210838741 hasConcept C154945302 @default.
- W4210838741 hasConcept C159078339 @default.
- W4210838741 hasConcept C160633673 @default.
- W4210838741 hasConcept C173163844 @default.
- W4210838741 hasConcept C178790620 @default.
- W4210838741 hasConcept C185592680 @default.
- W4210838741 hasConcept C205372480 @default.
- W4210838741 hasConcept C205649164 @default.
- W4210838741 hasConcept C2779687552 @default.
- W4210838741 hasConcept C31972630 @default.
- W4210838741 hasConcept C41008148 @default.
- W4210838741 hasConcept C544778455 @default.
- W4210838741 hasConcept C62649853 @default.
- W4210838741 hasConcept C68516990 @default.
- W4210838741 hasConcept C77637269 @default.
- W4210838741 hasConcept C78660771 @default.
- W4210838741 hasConceptScore W4210838741C124066611 @default.
- W4210838741 hasConceptScore W4210838741C153180895 @default.
- W4210838741 hasConceptScore W4210838741C154945302 @default.
- W4210838741 hasConceptScore W4210838741C159078339 @default.
- W4210838741 hasConceptScore W4210838741C160633673 @default.
- W4210838741 hasConceptScore W4210838741C173163844 @default.
- W4210838741 hasConceptScore W4210838741C178790620 @default.
- W4210838741 hasConceptScore W4210838741C185592680 @default.
- W4210838741 hasConceptScore W4210838741C205372480 @default.
- W4210838741 hasConceptScore W4210838741C205649164 @default.
- W4210838741 hasConceptScore W4210838741C2779687552 @default.
- W4210838741 hasConceptScore W4210838741C31972630 @default.
- W4210838741 hasConceptScore W4210838741C41008148 @default.
- W4210838741 hasConceptScore W4210838741C544778455 @default.
- W4210838741 hasConceptScore W4210838741C62649853 @default.
- W4210838741 hasConceptScore W4210838741C68516990 @default.
- W4210838741 hasConceptScore W4210838741C77637269 @default.
- W4210838741 hasConceptScore W4210838741C78660771 @default.
- W4210838741 hasIssue "25" @default.
- W4210838741 hasLocation W42108387411 @default.
- W4210838741 hasOpenAccess W4210838741 @default.
- W4210838741 hasPrimaryLocation W42108387411 @default.
- W4210838741 hasRelatedWork W2014518624 @default.