Matches in SemOpenAlex for { <https://semopenalex.org/work/W4210838996> ?p ?o ?g. }
Showing items 1 to 93 of
93
with 100 items per page.
- W4210838996 endingPage "247" @default.
- W4210838996 startingPage "241" @default.
- W4210838996 abstract "Objective Optimizing operating room (OR) efficiency depends on accurate case duration estimates. Machine learning (ML) methods have been used to predict OR case durations in other subspecialties. We hypothesize that ML methods improve projected case lengths over existing non-ML techniques for otolaryngology–head and neck surgery cases. Methods Deidentified patient information from otolaryngology surgical cases at 1 academic institution were reviewed from 2016 to 2020. Variables collected included patient, surgeon, procedure, and facility data known preoperatively so as to capture all realistic contributors. Available case data were divided into a training and testing data set. Several ML algorithms were evaluated based on best performance of predicted case duration when compared to actual case duration. Performance of all models was compared by the average root mean squared error and mean absolute error (MAE). Results In total, 50,888 otolaryngology surgical cases were evaluated with an average case duration of 98.3 ± 86.9 minutes. Most cases were general otolaryngology (n = 16,620). Case features closely associated with OR duration included procedure performed, surgeon, subspecialty of case, and postoperative destination of the patient. The best-performing ML models were CatBoost and XGBoost, which reduced operative time MAE by 9.6 minutes and 8.5 minutes compared to current methods, respectively. Discussion The incorporation of other easily identifiable features beyond procedure performed and surgeon meaningfully improved our operative duration prediction accuracy. CatBoost provided the best-performing ML model. Implications for Practice ML algorithms to predict OR case time duration in otolaryngology can improve case duration accuracy and result in financial benefit." @default.
- W4210838996 created "2022-02-09" @default.
- W4210838996 creator A5008327671 @default.
- W4210838996 creator A5036144895 @default.
- W4210838996 creator A5038335533 @default.
- W4210838996 creator A5039050650 @default.
- W4210838996 creator A5058748971 @default.
- W4210838996 creator A5086989648 @default.
- W4210838996 date "2023-01-26" @default.
- W4210838996 modified "2023-09-30" @default.
- W4210838996 title "Using Machine Learning to Predict Operating Room Case Duration: A Case Study in Otolaryngology" @default.
- W4210838996 cites W1631913055 @default.
- W4210838996 cites W1978914336 @default.
- W4210838996 cites W2089706296 @default.
- W4210838996 cites W2118984853 @default.
- W4210838996 cites W2119574640 @default.
- W4210838996 cites W2120199131 @default.
- W4210838996 cites W2331886782 @default.
- W4210838996 cites W2646293627 @default.
- W4210838996 cites W2789236151 @default.
- W4210838996 cites W2790233912 @default.
- W4210838996 cites W2810936050 @default.
- W4210838996 cites W2899115116 @default.
- W4210838996 cites W2907343059 @default.
- W4210838996 cites W2910629495 @default.
- W4210838996 cites W2913945298 @default.
- W4210838996 cites W2969398252 @default.
- W4210838996 cites W2995105414 @default.
- W4210838996 cites W3003578123 @default.
- W4210838996 cites W3022285462 @default.
- W4210838996 cites W3092408429 @default.
- W4210838996 cites W3097159059 @default.
- W4210838996 cites W3102476541 @default.
- W4210838996 cites W3121798080 @default.
- W4210838996 cites W3129088867 @default.
- W4210838996 cites W3130597413 @default.
- W4210838996 cites W3137318781 @default.
- W4210838996 cites W3169208653 @default.
- W4210838996 cites W4200267335 @default.
- W4210838996 cites W4237380318 @default.
- W4210838996 doi "https://doi.org/10.1177/01945998221076480" @default.
- W4210838996 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35133897" @default.
- W4210838996 hasPublicationYear "2023" @default.
- W4210838996 type Work @default.
- W4210838996 citedByCount "6" @default.
- W4210838996 countsByYear W42108389962022 @default.
- W4210838996 countsByYear W42108389962023 @default.
- W4210838996 crossrefType "journal-article" @default.
- W4210838996 hasAuthorship W4210838996A5008327671 @default.
- W4210838996 hasAuthorship W4210838996A5036144895 @default.
- W4210838996 hasAuthorship W4210838996A5038335533 @default.
- W4210838996 hasAuthorship W4210838996A5039050650 @default.
- W4210838996 hasAuthorship W4210838996A5058748971 @default.
- W4210838996 hasAuthorship W4210838996A5086989648 @default.
- W4210838996 hasConcept C108516343 @default.
- W4210838996 hasConcept C112758219 @default.
- W4210838996 hasConcept C118552586 @default.
- W4210838996 hasConcept C124952713 @default.
- W4210838996 hasConcept C141071460 @default.
- W4210838996 hasConcept C142362112 @default.
- W4210838996 hasConcept C2780642338 @default.
- W4210838996 hasConcept C41008148 @default.
- W4210838996 hasConcept C71924100 @default.
- W4210838996 hasConceptScore W4210838996C108516343 @default.
- W4210838996 hasConceptScore W4210838996C112758219 @default.
- W4210838996 hasConceptScore W4210838996C118552586 @default.
- W4210838996 hasConceptScore W4210838996C124952713 @default.
- W4210838996 hasConceptScore W4210838996C141071460 @default.
- W4210838996 hasConceptScore W4210838996C142362112 @default.
- W4210838996 hasConceptScore W4210838996C2780642338 @default.
- W4210838996 hasConceptScore W4210838996C41008148 @default.
- W4210838996 hasConceptScore W4210838996C71924100 @default.
- W4210838996 hasIssue "2" @default.
- W4210838996 hasLocation W42108389961 @default.
- W4210838996 hasLocation W42108389962 @default.
- W4210838996 hasOpenAccess W4210838996 @default.
- W4210838996 hasPrimaryLocation W42108389961 @default.
- W4210838996 hasRelatedWork W2047967234 @default.
- W4210838996 hasRelatedWork W2144562784 @default.
- W4210838996 hasRelatedWork W2439875401 @default.
- W4210838996 hasRelatedWork W2443126739 @default.
- W4210838996 hasRelatedWork W2748952813 @default.
- W4210838996 hasRelatedWork W2753199014 @default.
- W4210838996 hasRelatedWork W2899084033 @default.
- W4210838996 hasRelatedWork W3131398052 @default.
- W4210838996 hasRelatedWork W4210838996 @default.
- W4210838996 hasRelatedWork W4322729366 @default.
- W4210838996 hasVolume "168" @default.
- W4210838996 isParatext "false" @default.
- W4210838996 isRetracted "false" @default.
- W4210838996 workType "article" @default.