Matches in SemOpenAlex for { <https://semopenalex.org/work/W4210854847> ?p ?o ?g. }
- W4210854847 endingPage "15" @default.
- W4210854847 startingPage "1" @default.
- W4210854847 abstract "Full-waveform satellite LiDAR can be used to retrieve the terrestrial surface information by decomposing its received waveforms. However, it is challenging to accurately extract the parameters of each component from a non-Gaussian overlapped waveform, which happens in steep mountain or urban areas. Therefore, a synthetic algorithm with the boosted Richardson–Lucy (RL) deconvolution, layered extraction, and gradient descent is proposed to implement the skew-normal decomposition for the received waveforms. To validate the performance of the proposed algorithm, we developed waveform decomposition experiments for three types of data, including known-parameter waveforms, simulated waveforms, and Global Ecosystem Dynamics Investigation (GEDI) satellite LiDAR waveforms. Meanwhile, we figured out the evaluation metrics involving correlation coefficients (CCs); root mean square errors (RMSEs); extracted parameter errors; and successful, missing, and unwanted rates for the decomposed waveforms. Through comparing the decomposed results of the proposed algorithm and the classical direct Gaussian decomposition (DGD) algorithms, we discovered that 1) the average CC has a growth of 4% and the average RMSE has a reduction of 60%; 2) the average errors of extracted amplitude, peak position, and pulsewidth have mitigated with 3.9%, 2.2%, and 5.1%, respectively; and 3) the successful detection rate increases by 40% and the unwanted and the missing rate decrease by 5% and 35% for the 2000 groups of known-parameter waveforms. In addition, the average CCs have slight growth of 3% and 1.2%, and the average RMSEs have significant reductions of 43% and 49% for the simulated and GEDI LiDAR waveforms, respectively. This research provides a preferable waveform decomposing approach conductive to characterizing the terrestrial information from the overlapping skew-normal full waveforms." @default.
- W4210854847 created "2022-02-09" @default.
- W4210854847 creator A5002217097 @default.
- W4210854847 creator A5034969040 @default.
- W4210854847 creator A5046357185 @default.
- W4210854847 creator A5060666140 @default.
- W4210854847 creator A5072123826 @default.
- W4210854847 date "2022-01-01" @default.
- W4210854847 modified "2023-10-16" @default.
- W4210854847 title "A Synthetic Algorithm on the Skew-Normal Decomposition for Satellite LiDAR Waveforms" @default.
- W4210854847 cites W1969607685 @default.
- W4210854847 cites W1983385967 @default.
- W4210854847 cites W1990077509 @default.
- W4210854847 cites W1995140517 @default.
- W4210854847 cites W1998801235 @default.
- W4210854847 cites W2030066785 @default.
- W4210854847 cites W2045615805 @default.
- W4210854847 cites W2050487419 @default.
- W4210854847 cites W2065255726 @default.
- W4210854847 cites W2066783491 @default.
- W4210854847 cites W2070815098 @default.
- W4210854847 cites W2071515571 @default.
- W4210854847 cites W2081043154 @default.
- W4210854847 cites W2082750454 @default.
- W4210854847 cites W2088909704 @default.
- W4210854847 cites W2091168295 @default.
- W4210854847 cites W2094605604 @default.
- W4210854847 cites W2097993678 @default.
- W4210854847 cites W2106923440 @default.
- W4210854847 cites W2131408147 @default.
- W4210854847 cites W2144511863 @default.
- W4210854847 cites W2158757182 @default.
- W4210854847 cites W2169951244 @default.
- W4210854847 cites W2314752190 @default.
- W4210854847 cites W2613353824 @default.
- W4210854847 cites W2913226741 @default.
- W4210854847 cites W2984142728 @default.
- W4210854847 cites W3016480557 @default.
- W4210854847 cites W3024139594 @default.
- W4210854847 doi "https://doi.org/10.1109/tgrs.2022.3149752" @default.
- W4210854847 hasPublicationYear "2022" @default.
- W4210854847 type Work @default.
- W4210854847 citedByCount "4" @default.
- W4210854847 countsByYear W42108548472022 @default.
- W4210854847 countsByYear W42108548472023 @default.
- W4210854847 crossrefType "journal-article" @default.
- W4210854847 hasAuthorship W4210854847A5002217097 @default.
- W4210854847 hasAuthorship W4210854847A5034969040 @default.
- W4210854847 hasAuthorship W4210854847A5046357185 @default.
- W4210854847 hasAuthorship W4210854847A5060666140 @default.
- W4210854847 hasAuthorship W4210854847A5072123826 @default.
- W4210854847 hasConcept C105795698 @default.
- W4210854847 hasConcept C11413529 @default.
- W4210854847 hasConcept C120665830 @default.
- W4210854847 hasConcept C121332964 @default.
- W4210854847 hasConcept C127313418 @default.
- W4210854847 hasConcept C1276947 @default.
- W4210854847 hasConcept C139945424 @default.
- W4210854847 hasConcept C163716315 @default.
- W4210854847 hasConcept C174576160 @default.
- W4210854847 hasConcept C180205008 @default.
- W4210854847 hasConcept C185429906 @default.
- W4210854847 hasConcept C19269812 @default.
- W4210854847 hasConcept C197424946 @default.
- W4210854847 hasConcept C33923547 @default.
- W4210854847 hasConcept C41008148 @default.
- W4210854847 hasConcept C43711488 @default.
- W4210854847 hasConcept C554190296 @default.
- W4210854847 hasConcept C62520636 @default.
- W4210854847 hasConcept C62649853 @default.
- W4210854847 hasConcept C76155785 @default.
- W4210854847 hasConceptScore W4210854847C105795698 @default.
- W4210854847 hasConceptScore W4210854847C11413529 @default.
- W4210854847 hasConceptScore W4210854847C120665830 @default.
- W4210854847 hasConceptScore W4210854847C121332964 @default.
- W4210854847 hasConceptScore W4210854847C127313418 @default.
- W4210854847 hasConceptScore W4210854847C1276947 @default.
- W4210854847 hasConceptScore W4210854847C139945424 @default.
- W4210854847 hasConceptScore W4210854847C163716315 @default.
- W4210854847 hasConceptScore W4210854847C174576160 @default.
- W4210854847 hasConceptScore W4210854847C180205008 @default.
- W4210854847 hasConceptScore W4210854847C185429906 @default.
- W4210854847 hasConceptScore W4210854847C19269812 @default.
- W4210854847 hasConceptScore W4210854847C197424946 @default.
- W4210854847 hasConceptScore W4210854847C33923547 @default.
- W4210854847 hasConceptScore W4210854847C41008148 @default.
- W4210854847 hasConceptScore W4210854847C43711488 @default.
- W4210854847 hasConceptScore W4210854847C554190296 @default.
- W4210854847 hasConceptScore W4210854847C62520636 @default.
- W4210854847 hasConceptScore W4210854847C62649853 @default.
- W4210854847 hasConceptScore W4210854847C76155785 @default.
- W4210854847 hasFunder F4320321001 @default.
- W4210854847 hasLocation W42108548471 @default.
- W4210854847 hasOpenAccess W4210854847 @default.
- W4210854847 hasPrimaryLocation W42108548471 @default.
- W4210854847 hasRelatedWork W1974895211 @default.
- W4210854847 hasRelatedWork W2032074591 @default.
- W4210854847 hasRelatedWork W2037261263 @default.