Matches in SemOpenAlex for { <https://semopenalex.org/work/W4210858069> ?p ?o ?g. }
- W4210858069 endingPage "1187" @default.
- W4210858069 startingPage "1169" @default.
- W4210858069 abstract "The importance of the accurate forecasting of power outputsof wind-based generation systems is increasing, as their contributions to the total system generation are rising. However, wind energy resource exhibits strong and stochastic spatio-temporal variations, which further combine with the uncertainties in WF operating regimes, i.e., numbers of wind turbines in normal operation, under curtailment, or that are faulty/disconnected. This paper presents a novel approach for efficient dealing with uncertainties in hour-ahead forecasted WF power outputs. It first applies Bayesian convolutional neural network-bidirectional long short-term memory (Bayesian CNN-BiLSTM) method, which allows for a more accurate probabilistic forecasting of wind speed, air density and wind direction, using the nearby WFs as additional input data. The WF operating regimes are also predicted using the same Bayesian CNN-BiLSTM structure. Afterwards, a high-dimensional Vine-Gaussian mixture Copula model is combined with Bayesian CNN-BiLSTM model to evaluate uncertainties in the WF outputs based on a cross-correlational conditioning of the forecasted weather variables and operating regimes. The proposed combined model is applied and validated using the actual field measurements from two WF clusters in close locations in Croatia and is also benchmarked against several other models." @default.
- W4210858069 created "2022-02-09" @default.
- W4210858069 creator A5012857641 @default.
- W4210858069 creator A5043232438 @default.
- W4210858069 creator A5053094900 @default.
- W4210858069 creator A5057974305 @default.
- W4210858069 creator A5059423622 @default.
- W4210858069 creator A5062952220 @default.
- W4210858069 creator A5070881610 @default.
- W4210858069 date "2022-04-01" @default.
- W4210858069 modified "2023-10-09" @default.
- W4210858069 title "Bayesian CNN-BiLSTM and Vine-GMCM Based Probabilistic Forecasting of Hour-Ahead Wind Farm Power Outputs" @default.
- W4210858069 cites W1578897004 @default.
- W4210858069 cites W1600744878 @default.
- W4210858069 cites W1864372840 @default.
- W4210858069 cites W1964886660 @default.
- W4210858069 cites W1965555277 @default.
- W4210858069 cites W1975341011 @default.
- W4210858069 cites W2024027437 @default.
- W4210858069 cites W2056265418 @default.
- W4210858069 cites W2059413288 @default.
- W4210858069 cites W2064675550 @default.
- W4210858069 cites W2066890570 @default.
- W4210858069 cites W2097462126 @default.
- W4210858069 cites W2112159553 @default.
- W4210858069 cites W2113536687 @default.
- W4210858069 cites W2114471530 @default.
- W4210858069 cites W2131774270 @default.
- W4210858069 cites W2132634326 @default.
- W4210858069 cites W2145334893 @default.
- W4210858069 cites W2147598563 @default.
- W4210858069 cites W2147755528 @default.
- W4210858069 cites W2149906128 @default.
- W4210858069 cites W2165799067 @default.
- W4210858069 cites W2296521892 @default.
- W4210858069 cites W2312482938 @default.
- W4210858069 cites W2315426463 @default.
- W4210858069 cites W2344428291 @default.
- W4210858069 cites W2344800985 @default.
- W4210858069 cites W2400112622 @default.
- W4210858069 cites W2514865925 @default.
- W4210858069 cites W2592036976 @default.
- W4210858069 cites W2611772571 @default.
- W4210858069 cites W2754252319 @default.
- W4210858069 cites W2775303493 @default.
- W4210858069 cites W2800256551 @default.
- W4210858069 cites W2806372086 @default.
- W4210858069 cites W2887592707 @default.
- W4210858069 cites W2888884990 @default.
- W4210858069 cites W2922465095 @default.
- W4210858069 cites W2936236242 @default.
- W4210858069 cites W2942406345 @default.
- W4210858069 cites W2945118726 @default.
- W4210858069 cites W2953049129 @default.
- W4210858069 cites W2971571896 @default.
- W4210858069 cites W2982966244 @default.
- W4210858069 cites W2998188743 @default.
- W4210858069 cites W3003555975 @default.
- W4210858069 cites W3020882770 @default.
- W4210858069 cites W3021080228 @default.
- W4210858069 cites W3024790739 @default.
- W4210858069 cites W3044436817 @default.
- W4210858069 cites W3049512327 @default.
- W4210858069 cites W3088188088 @default.
- W4210858069 cites W3127099006 @default.
- W4210858069 cites W4206628346 @default.
- W4210858069 doi "https://doi.org/10.1109/tste.2022.3148718" @default.
- W4210858069 hasPublicationYear "2022" @default.
- W4210858069 type Work @default.
- W4210858069 citedByCount "15" @default.
- W4210858069 countsByYear W42108580692022 @default.
- W4210858069 countsByYear W42108580692023 @default.
- W4210858069 crossrefType "journal-article" @default.
- W4210858069 hasAuthorship W4210858069A5012857641 @default.
- W4210858069 hasAuthorship W4210858069A5043232438 @default.
- W4210858069 hasAuthorship W4210858069A5053094900 @default.
- W4210858069 hasAuthorship W4210858069A5057974305 @default.
- W4210858069 hasAuthorship W4210858069A5059423622 @default.
- W4210858069 hasAuthorship W4210858069A5062952220 @default.
- W4210858069 hasAuthorship W4210858069A5070881610 @default.
- W4210858069 hasConcept C107673813 @default.
- W4210858069 hasConcept C119599485 @default.
- W4210858069 hasConcept C119857082 @default.
- W4210858069 hasConcept C121332964 @default.
- W4210858069 hasConcept C122282355 @default.
- W4210858069 hasConcept C127413603 @default.
- W4210858069 hasConcept C149782125 @default.
- W4210858069 hasConcept C153294291 @default.
- W4210858069 hasConcept C154945302 @default.
- W4210858069 hasConcept C161067210 @default.
- W4210858069 hasConcept C161584116 @default.
- W4210858069 hasConcept C163258240 @default.
- W4210858069 hasConcept C163716315 @default.
- W4210858069 hasConcept C17618745 @default.
- W4210858069 hasConcept C2779676228 @default.
- W4210858069 hasConcept C2781084341 @default.
- W4210858069 hasConcept C33724603 @default.
- W4210858069 hasConcept C33923547 @default.