Matches in SemOpenAlex for { <https://semopenalex.org/work/W4210858744> ?p ?o ?g. }
- W4210858744 abstract "Abstract Hip fractures are a major cause of morbidity and mortality in the elderly, and incur high health and social care costs. Given projected population ageing, the number of incident hip fractures is predicted to increase globally. As fracture classification strongly determines the chosen surgical treatment, differences in fracture classification influence patient outcomes and treatment costs. We aimed to create a machine learning method for identifying and classifying hip fractures, and to compare its performance to experienced human observers. We used 3659 hip radiographs, classified by at least two expert clinicians. The machine learning method was able to classify hip fractures with 19% greater accuracy than humans, achieving overall accuracy of 92%." @default.
- W4210858744 created "2022-02-09" @default.
- W4210858744 creator A5010546985 @default.
- W4210858744 creator A5013936120 @default.
- W4210858744 creator A5014602122 @default.
- W4210858744 creator A5015477612 @default.
- W4210858744 creator A5029735541 @default.
- W4210858744 creator A5050371218 @default.
- W4210858744 creator A5060283890 @default.
- W4210858744 creator A5065442807 @default.
- W4210858744 creator A5068462185 @default.
- W4210858744 creator A5072210649 @default.
- W4210858744 creator A5082738570 @default.
- W4210858744 date "2022-02-08" @default.
- W4210858744 modified "2023-10-15" @default.
- W4210858744 title "Machine learning outperforms clinical experts in classification of hip fractures" @default.
- W4210858744 cites W1444168786 @default.
- W4210858744 cites W1558236383 @default.
- W4210858744 cites W1903029394 @default.
- W4210858744 cites W1966854150 @default.
- W4210858744 cites W2007601283 @default.
- W4210858744 cites W2022450242 @default.
- W4210858744 cites W2030871233 @default.
- W4210858744 cites W2040260131 @default.
- W4210858744 cites W2051937800 @default.
- W4210858744 cites W2056109249 @default.
- W4210858744 cites W2064208261 @default.
- W4210858744 cites W2069816479 @default.
- W4210858744 cites W2102085729 @default.
- W4210858744 cites W2107177524 @default.
- W4210858744 cites W2111547563 @default.
- W4210858744 cites W2121815876 @default.
- W4210858744 cites W2155893237 @default.
- W4210858744 cites W2206249018 @default.
- W4210858744 cites W2527113534 @default.
- W4210858744 cites W2546410677 @default.
- W4210858744 cites W2557738935 @default.
- W4210858744 cites W2604759322 @default.
- W4210858744 cites W2608730601 @default.
- W4210858744 cites W2618530766 @default.
- W4210858744 cites W2770514878 @default.
- W4210858744 cites W2792617219 @default.
- W4210858744 cites W2899835486 @default.
- W4210858744 cites W2907811801 @default.
- W4210858744 cites W2911410812 @default.
- W4210858744 cites W2918533893 @default.
- W4210858744 cites W2919115771 @default.
- W4210858744 cites W2935090763 @default.
- W4210858744 cites W2947228242 @default.
- W4210858744 cites W2963202012 @default.
- W4210858744 cites W2963521553 @default.
- W4210858744 cites W2977386857 @default.
- W4210858744 cites W3013902712 @default.
- W4210858744 cites W3041158182 @default.
- W4210858744 cites W3048902157 @default.
- W4210858744 cites W3099947442 @default.
- W4210858744 cites W4244665703 @default.
- W4210858744 doi "https://doi.org/10.1038/s41598-022-06018-9" @default.
- W4210858744 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35136091" @default.
- W4210858744 hasPublicationYear "2022" @default.
- W4210858744 type Work @default.
- W4210858744 citedByCount "8" @default.
- W4210858744 countsByYear W42108587442022 @default.
- W4210858744 countsByYear W42108587442023 @default.
- W4210858744 crossrefType "journal-article" @default.
- W4210858744 hasAuthorship W4210858744A5010546985 @default.
- W4210858744 hasAuthorship W4210858744A5013936120 @default.
- W4210858744 hasAuthorship W4210858744A5014602122 @default.
- W4210858744 hasAuthorship W4210858744A5015477612 @default.
- W4210858744 hasAuthorship W4210858744A5029735541 @default.
- W4210858744 hasAuthorship W4210858744A5050371218 @default.
- W4210858744 hasAuthorship W4210858744A5060283890 @default.
- W4210858744 hasAuthorship W4210858744A5065442807 @default.
- W4210858744 hasAuthorship W4210858744A5068462185 @default.
- W4210858744 hasAuthorship W4210858744A5072210649 @default.
- W4210858744 hasAuthorship W4210858744A5082738570 @default.
- W4210858744 hasBestOaLocation W42108587441 @default.
- W4210858744 hasConcept C119857082 @default.
- W4210858744 hasConcept C126322002 @default.
- W4210858744 hasConcept C13774568 @default.
- W4210858744 hasConcept C141071460 @default.
- W4210858744 hasConcept C154945302 @default.
- W4210858744 hasConcept C160735492 @default.
- W4210858744 hasConcept C162324750 @default.
- W4210858744 hasConcept C1862650 @default.
- W4210858744 hasConcept C2776541429 @default.
- W4210858744 hasConcept C2778885795 @default.
- W4210858744 hasConcept C2908647359 @default.
- W4210858744 hasConcept C36454342 @default.
- W4210858744 hasConcept C41008148 @default.
- W4210858744 hasConcept C50522688 @default.
- W4210858744 hasConcept C71924100 @default.
- W4210858744 hasConcept C99454951 @default.
- W4210858744 hasConceptScore W4210858744C119857082 @default.
- W4210858744 hasConceptScore W4210858744C126322002 @default.
- W4210858744 hasConceptScore W4210858744C13774568 @default.
- W4210858744 hasConceptScore W4210858744C141071460 @default.
- W4210858744 hasConceptScore W4210858744C154945302 @default.
- W4210858744 hasConceptScore W4210858744C160735492 @default.
- W4210858744 hasConceptScore W4210858744C162324750 @default.