Matches in SemOpenAlex for { <https://semopenalex.org/work/W4210896625> ?p ?o ?g. }
- W4210896625 endingPage "769" @default.
- W4210896625 startingPage "769" @default.
- W4210896625 abstract "Sea surface wind (SSW) is a crucial parameter for meteorological and oceanographic research, and accurate observation of SSW is valuable for a wide range of applications. However, most existing SSW data products are at a coarse spatial resolution, which is insufficient, especially for regional or local studies. Therefore, in this paper, to derive finer-resolution estimates of SSW, we present a novel statistical downscaling approach for satellite SSW based on generative adversarial networks and dual learning scheme, taking WindSat as a typical example. The dual learning scheme performs a primal task to reconstruct high resolution SSW, and a dual task to estimate the degradation kernels, which form a closed loop and are simultaneously learned, thus introducing an additional constraint to reduce the solution space. The integration of a dual learning scheme as the generator into the generative adversarial network structure further yield better downscaling performance by fine-tuning the generated SSW closer to high-resolution SSW. Besides, a model adaptation strategy was exploited to enhance the capacity for downscaling from low-resolution SSW without high-resolution ground truth. Comprehensive experiments were conducted on both the synthetic paired and unpaired SSW data. In the study areas of the East Coast of North America and the North Indian Ocean, in this work, the downscaling results to 0.25° (high resolution on the synthetic dataset), 0.03125° (8× downscaling), and 0.015625° (16× downscaling) of the proposed approach achieve the highest accuracy in terms of root mean square error and R-Square. The downscaling resolution can be enhanced by increasing the basic blocks in the generator. The highest downscaling reconstruction quality in terms of peak signal-to-noise ratio and structural similarity index was also achieved on the synthetic dataset with high-resolution ground truth. The experimental results demonstrate the effectiveness of the proposed downscaling network and the superior performance compared with the other typical advanced downscaling methods, including bicubic interpolation, DeepSD, dual regression networks, and adversarial DeepSD." @default.
- W4210896625 created "2022-02-09" @default.
- W4210896625 creator A5009116003 @default.
- W4210896625 creator A5025579582 @default.
- W4210896625 creator A5046110222 @default.
- W4210896625 creator A5053341118 @default.
- W4210896625 creator A5058974135 @default.
- W4210896625 creator A5059449978 @default.
- W4210896625 date "2022-02-07" @default.
- W4210896625 modified "2023-10-06" @default.
- W4210896625 title "A Spatial Downscaling Approach for WindSat Satellite Sea Surface Wind Based on Generative Adversarial Networks and Dual Learning Scheme" @default.
- W4210896625 cites W1885185971 @default.
- W4210896625 cites W1964718569 @default.
- W4210896625 cites W1970239932 @default.
- W4210896625 cites W2059734998 @default.
- W4210896625 cites W2069704561 @default.
- W4210896625 cites W2078628643 @default.
- W4210896625 cites W2146735319 @default.
- W4210896625 cites W2157494358 @default.
- W4210896625 cites W2169082503 @default.
- W4210896625 cites W2245654650 @default.
- W4210896625 cites W2476531129 @default.
- W4210896625 cites W2529239031 @default.
- W4210896625 cites W2558575500 @default.
- W4210896625 cites W2603152443 @default.
- W4210896625 cites W2745154512 @default.
- W4210896625 cites W2901537366 @default.
- W4210896625 cites W2927611741 @default.
- W4210896625 cites W2947010533 @default.
- W4210896625 cites W2979808978 @default.
- W4210896625 cites W2995135439 @default.
- W4210896625 cites W2995265070 @default.
- W4210896625 cites W2997235073 @default.
- W4210896625 cites W2998325835 @default.
- W4210896625 cites W3011545186 @default.
- W4210896625 cites W3013529009 @default.
- W4210896625 cites W3016644114 @default.
- W4210896625 cites W3021465557 @default.
- W4210896625 cites W3039441806 @default.
- W4210896625 cites W3046387678 @default.
- W4210896625 cites W3089550499 @default.
- W4210896625 cites W3098383946 @default.
- W4210896625 cites W3108646275 @default.
- W4210896625 cites W3134850017 @default.
- W4210896625 cites W3155023782 @default.
- W4210896625 cites W3155502488 @default.
- W4210896625 cites W3164709824 @default.
- W4210896625 cites W3168326120 @default.
- W4210896625 cites W3182924163 @default.
- W4210896625 doi "https://doi.org/10.3390/rs14030769" @default.
- W4210896625 hasPublicationYear "2022" @default.
- W4210896625 type Work @default.
- W4210896625 citedByCount "2" @default.
- W4210896625 countsByYear W42108966252023 @default.
- W4210896625 crossrefType "journal-article" @default.
- W4210896625 hasAuthorship W4210896625A5009116003 @default.
- W4210896625 hasAuthorship W4210896625A5025579582 @default.
- W4210896625 hasAuthorship W4210896625A5046110222 @default.
- W4210896625 hasAuthorship W4210896625A5053341118 @default.
- W4210896625 hasAuthorship W4210896625A5058974135 @default.
- W4210896625 hasAuthorship W4210896625A5059449978 @default.
- W4210896625 hasBestOaLocation W42108966251 @default.
- W4210896625 hasConcept C105795698 @default.
- W4210896625 hasConcept C107054158 @default.
- W4210896625 hasConcept C127313418 @default.
- W4210896625 hasConcept C127413603 @default.
- W4210896625 hasConcept C139945424 @default.
- W4210896625 hasConcept C146978453 @default.
- W4210896625 hasConcept C153294291 @default.
- W4210896625 hasConcept C154945302 @default.
- W4210896625 hasConcept C19269812 @default.
- W4210896625 hasConcept C205372480 @default.
- W4210896625 hasConcept C205649164 @default.
- W4210896625 hasConcept C33923547 @default.
- W4210896625 hasConcept C39432304 @default.
- W4210896625 hasConcept C41008148 @default.
- W4210896625 hasConcept C41156917 @default.
- W4210896625 hasConcept C62649853 @default.
- W4210896625 hasConceptScore W4210896625C105795698 @default.
- W4210896625 hasConceptScore W4210896625C107054158 @default.
- W4210896625 hasConceptScore W4210896625C127313418 @default.
- W4210896625 hasConceptScore W4210896625C127413603 @default.
- W4210896625 hasConceptScore W4210896625C139945424 @default.
- W4210896625 hasConceptScore W4210896625C146978453 @default.
- W4210896625 hasConceptScore W4210896625C153294291 @default.
- W4210896625 hasConceptScore W4210896625C154945302 @default.
- W4210896625 hasConceptScore W4210896625C19269812 @default.
- W4210896625 hasConceptScore W4210896625C205372480 @default.
- W4210896625 hasConceptScore W4210896625C205649164 @default.
- W4210896625 hasConceptScore W4210896625C33923547 @default.
- W4210896625 hasConceptScore W4210896625C39432304 @default.
- W4210896625 hasConceptScore W4210896625C41008148 @default.
- W4210896625 hasConceptScore W4210896625C41156917 @default.
- W4210896625 hasConceptScore W4210896625C62649853 @default.
- W4210896625 hasFunder F4320321001 @default.
- W4210896625 hasIssue "3" @default.
- W4210896625 hasLocation W42108966251 @default.
- W4210896625 hasLocation W42108966252 @default.