Matches in SemOpenAlex for { <https://semopenalex.org/work/W4210897777> ?p ?o ?g. }
- W4210897777 endingPage "17932" @default.
- W4210897777 startingPage "17920" @default.
- W4210897777 abstract "Skin cancer is caused due to unusual development of skin cells and deadly type cancer. Early diagnosis is very significant and can avoid some categories of skin cancers, such as melanoma and focal cell carcinoma. The recognition and the classification of skin malignant growth in the beginning time is expensive and challenging. The deep learning architectures such as recurrent networks and convolutional neural networks (ConvNets) are developed in the past, which are proven appropriate for non-handcrafted extraction of complex features. To additional expand the efficiency of the ConvNet models, a cascaded ensembled network that uses an integration of ConvNet and handcrafted features based multi-layer perceptron is proposed in this work. This offered model utilizes the convolutional neural network model to mine non-handcrafted image features and colour moments and texture features as handcrafted features. It is demonstrated that accuracy of ensembled deep learning model is improved to 98.3% from 85.3% of convolutional neural network model." @default.
- W4210897777 created "2022-02-09" @default.
- W4210897777 creator A5006029282 @default.
- W4210897777 creator A5007107453 @default.
- W4210897777 creator A5011507183 @default.
- W4210897777 creator A5030848928 @default.
- W4210897777 creator A5030895613 @default.
- W4210897777 creator A5052139542 @default.
- W4210897777 creator A5072297118 @default.
- W4210897777 creator A5078103272 @default.
- W4210897777 creator A5087630623 @default.
- W4210897777 creator A5089771051 @default.
- W4210897777 date "2022-01-01" @default.
- W4210897777 modified "2023-10-11" @default.
- W4210897777 title "Dermatologist-Level Classification of Skin Cancer Using Cascaded Ensembling of Convolutional Neural Network and Handcrafted Features Based Deep Neural Network" @default.
- W4210897777 cites W1509451745 @default.
- W4210897777 cites W2001378671 @default.
- W4210897777 cites W2026720263 @default.
- W4210897777 cites W2102121645 @default.
- W4210897777 cites W2131264832 @default.
- W4210897777 cites W2132456362 @default.
- W4210897777 cites W2152950860 @default.
- W4210897777 cites W2559090303 @default.
- W4210897777 cites W2591669284 @default.
- W4210897777 cites W2592124696 @default.
- W4210897777 cites W2611331354 @default.
- W4210897777 cites W2637404261 @default.
- W4210897777 cites W2781554690 @default.
- W4210897777 cites W2885059412 @default.
- W4210897777 cites W2891595725 @default.
- W4210897777 cites W2909479956 @default.
- W4210897777 cites W2911855788 @default.
- W4210897777 cites W2921597936 @default.
- W4210897777 cites W2944102448 @default.
- W4210897777 cites W2963059730 @default.
- W4210897777 cites W2977063526 @default.
- W4210897777 cites W2990040069 @default.
- W4210897777 cites W2990042794 @default.
- W4210897777 cites W3007150961 @default.
- W4210897777 cites W3008811585 @default.
- W4210897777 cites W3012614932 @default.
- W4210897777 cites W3014613513 @default.
- W4210897777 cites W3017407016 @default.
- W4210897777 cites W3022365663 @default.
- W4210897777 cites W3031346995 @default.
- W4210897777 cites W3036298167 @default.
- W4210897777 cites W3096463248 @default.
- W4210897777 cites W3097709944 @default.
- W4210897777 cites W3120946080 @default.
- W4210897777 cites W3148150040 @default.
- W4210897777 cites W3158307528 @default.
- W4210897777 cites W3171031465 @default.
- W4210897777 cites W3184763326 @default.
- W4210897777 cites W3191036819 @default.
- W4210897777 cites W3191403381 @default.
- W4210897777 cites W3192610404 @default.
- W4210897777 cites W3208002538 @default.
- W4210897777 cites W2905827163 @default.
- W4210897777 doi "https://doi.org/10.1109/access.2022.3149824" @default.
- W4210897777 hasPublicationYear "2022" @default.
- W4210897777 type Work @default.
- W4210897777 citedByCount "39" @default.
- W4210897777 countsByYear W42108977772022 @default.
- W4210897777 countsByYear W42108977772023 @default.
- W4210897777 crossrefType "journal-article" @default.
- W4210897777 hasAuthorship W4210897777A5006029282 @default.
- W4210897777 hasAuthorship W4210897777A5007107453 @default.
- W4210897777 hasAuthorship W4210897777A5011507183 @default.
- W4210897777 hasAuthorship W4210897777A5030848928 @default.
- W4210897777 hasAuthorship W4210897777A5030895613 @default.
- W4210897777 hasAuthorship W4210897777A5052139542 @default.
- W4210897777 hasAuthorship W4210897777A5072297118 @default.
- W4210897777 hasAuthorship W4210897777A5078103272 @default.
- W4210897777 hasAuthorship W4210897777A5087630623 @default.
- W4210897777 hasAuthorship W4210897777A5089771051 @default.
- W4210897777 hasBestOaLocation W42108977771 @default.
- W4210897777 hasConcept C108583219 @default.
- W4210897777 hasConcept C115961682 @default.
- W4210897777 hasConcept C119857082 @default.
- W4210897777 hasConcept C121608353 @default.
- W4210897777 hasConcept C126322002 @default.
- W4210897777 hasConcept C153180895 @default.
- W4210897777 hasConcept C154945302 @default.
- W4210897777 hasConcept C179717631 @default.
- W4210897777 hasConcept C2777789703 @default.
- W4210897777 hasConcept C41008148 @default.
- W4210897777 hasConcept C50644808 @default.
- W4210897777 hasConcept C52622490 @default.
- W4210897777 hasConcept C60908668 @default.
- W4210897777 hasConcept C71924100 @default.
- W4210897777 hasConcept C75294576 @default.
- W4210897777 hasConcept C81363708 @default.
- W4210897777 hasConceptScore W4210897777C108583219 @default.
- W4210897777 hasConceptScore W4210897777C115961682 @default.
- W4210897777 hasConceptScore W4210897777C119857082 @default.
- W4210897777 hasConceptScore W4210897777C121608353 @default.
- W4210897777 hasConceptScore W4210897777C126322002 @default.
- W4210897777 hasConceptScore W4210897777C153180895 @default.