Matches in SemOpenAlex for { <https://semopenalex.org/work/W4210908432> ?p ?o ?g. }
- W4210908432 abstract "Bacteria belonging to the genus Haemophilus cause a wide range of diseases in humans. Recently, H. influenzae was classified by the WHO as priority pathogen due to the wide spread of ampicillin resistant strains. However, other Haemophilus spp. are often misclassified as H. influenzae. Therefore, we established an accurate and rapid whole genome sequencing (WGS) based classification and serotyping algorithm and combined it with the detection of resistance genes.A gene presence/absence-based classification algorithm was developed, which employs the open-source gene-detection tool SRST2 and a new classification database comprising 36 genes, including capsule loci for serotyping. These genes were identified using a comparative genome analysis of 215 strains belonging to ten human-related Haemophilus (sub)species (training dataset). The algorithm was evaluated on 1329 public short read datasets (evaluation dataset) and used to reclassify 262 clinical Haemophilus spp. isolates from 250 patients (German cohort). In addition, the presence of antibiotic resistance genes within the German dataset was evaluated with SRST2 and correlated with results of traditional phenotyping assays.The newly developed algorithm can differentiate between clinically relevant Haemophilus species including, but not limited to, H. influenzae, H. haemolyticus, and H. parainfluenzae. It can also identify putative haemin-independent H. haemolyticus strains and determine the serotype of typeable Haemophilus strains. The algorithm performed excellently in the evaluation dataset (99.6% concordance with reported species classification and 99.5% with reported serotype) and revealed several misclassifications. Additionally, 83 out of 262 (31.7%) suspected H. influenzae strains from the German cohort were in fact H. haemolyticus strains, some of which associated with mouth abscesses and lower respiratory tract infections. Resistance genes were detected in 16 out of 262 datasets from the German cohort. Prediction of ampicillin resistance, associated with blaTEM-1D, and tetracycline resistance, associated with tetB, correlated well with available phenotypic data.Our new classification database and algorithm have the potential to improve diagnosis and surveillance of Haemophilus spp. and can easily be coupled with other public genotyping and antimicrobial resistance databases. Our data also point towards a possible pathogenic role of H. haemolyticus strains, which needs to be further investigated." @default.
- W4210908432 created "2022-02-09" @default.
- W4210908432 creator A5005392913 @default.
- W4210908432 creator A5015102907 @default.
- W4210908432 creator A5031940041 @default.
- W4210908432 creator A5041222465 @default.
- W4210908432 creator A5052753174 @default.
- W4210908432 creator A5063179666 @default.
- W4210908432 creator A5063438724 @default.
- W4210908432 creator A5065751866 @default.
- W4210908432 creator A5078438280 @default.
- W4210908432 creator A5079803601 @default.
- W4210908432 date "2022-02-09" @default.
- W4210908432 modified "2023-10-02" @default.
- W4210908432 title "Whole genome sequencing-based classification of human-related Haemophilus species and detection of antimicrobial resistance genes" @default.
- W4210908432 cites W1690710659 @default.
- W4210908432 cites W1910963137 @default.
- W4210908432 cites W1916484509 @default.
- W4210908432 cites W1950704523 @default.
- W4210908432 cites W1969576895 @default.
- W4210908432 cites W1972022879 @default.
- W4210908432 cites W1983548115 @default.
- W4210908432 cites W1987324713 @default.
- W4210908432 cites W1993970664 @default.
- W4210908432 cites W2007727647 @default.
- W4210908432 cites W2022843556 @default.
- W4210908432 cites W2031611770 @default.
- W4210908432 cites W2032386049 @default.
- W4210908432 cites W2055570050 @default.
- W4210908432 cites W2070234983 @default.
- W4210908432 cites W2080224894 @default.
- W4210908432 cites W2096093282 @default.
- W4210908432 cites W2096508681 @default.
- W4210908432 cites W2097511111 @default.
- W4210908432 cites W2097971934 @default.
- W4210908432 cites W2104291076 @default.
- W4210908432 cites W2116041602 @default.
- W4210908432 cites W2118688136 @default.
- W4210908432 cites W2120902911 @default.
- W4210908432 cites W2122673596 @default.
- W4210908432 cites W2124967403 @default.
- W4210908432 cites W2127034532 @default.
- W4210908432 cites W2139832609 @default.
- W4210908432 cites W2144682743 @default.
- W4210908432 cites W2147528411 @default.
- W4210908432 cites W2150219559 @default.
- W4210908432 cites W2152127318 @default.
- W4210908432 cites W2162494851 @default.
- W4210908432 cites W2170500310 @default.
- W4210908432 cites W2225557190 @default.
- W4210908432 cites W2304459557 @default.
- W4210908432 cites W2411046232 @default.
- W4210908432 cites W2467325308 @default.
- W4210908432 cites W2489364161 @default.
- W4210908432 cites W2622960368 @default.
- W4210908432 cites W2803507943 @default.
- W4210908432 cites W2893108325 @default.
- W4210908432 cites W2894808609 @default.
- W4210908432 cites W2896170351 @default.
- W4210908432 cites W2899060791 @default.
- W4210908432 cites W2912247112 @default.
- W4210908432 cites W2922137554 @default.
- W4210908432 cites W2927961455 @default.
- W4210908432 cites W2953235858 @default.
- W4210908432 cites W2968322804 @default.
- W4210908432 cites W2976461587 @default.
- W4210908432 cites W2979439625 @default.
- W4210908432 cites W2979549191 @default.
- W4210908432 cites W2990618091 @default.
- W4210908432 cites W2995731456 @default.
- W4210908432 cites W3024396528 @default.
- W4210908432 cites W3033417722 @default.
- W4210908432 cites W3141685679 @default.
- W4210908432 cites W4210908432 @default.
- W4210908432 cites W4247085835 @default.
- W4210908432 doi "https://doi.org/10.1186/s13073-022-01017-x" @default.
- W4210908432 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35139905" @default.
- W4210908432 hasPublicationYear "2022" @default.
- W4210908432 type Work @default.
- W4210908432 citedByCount "5" @default.
- W4210908432 countsByYear W42109084322022 @default.
- W4210908432 countsByYear W42109084322023 @default.
- W4210908432 crossrefType "journal-article" @default.
- W4210908432 hasAuthorship W4210908432A5005392913 @default.
- W4210908432 hasAuthorship W4210908432A5015102907 @default.
- W4210908432 hasAuthorship W4210908432A5031940041 @default.
- W4210908432 hasAuthorship W4210908432A5041222465 @default.
- W4210908432 hasAuthorship W4210908432A5052753174 @default.
- W4210908432 hasAuthorship W4210908432A5063179666 @default.
- W4210908432 hasAuthorship W4210908432A5063438724 @default.
- W4210908432 hasAuthorship W4210908432A5065751866 @default.
- W4210908432 hasAuthorship W4210908432A5078438280 @default.
- W4210908432 hasAuthorship W4210908432A5079803601 @default.
- W4210908432 hasBestOaLocation W42109084321 @default.
- W4210908432 hasConcept C10389963 @default.
- W4210908432 hasConcept C104317684 @default.
- W4210908432 hasConcept C141231307 @default.
- W4210908432 hasConcept C24432333 @default.
- W4210908432 hasConcept C2776402342 @default.
- W4210908432 hasConcept C2776925733 @default.