Matches in SemOpenAlex for { <https://semopenalex.org/work/W4210925184> ?p ?o ?g. }
- W4210925184 endingPage "66" @default.
- W4210925184 startingPage "55" @default.
- W4210925184 abstract "High-throughput virtual screening by using a combination of first-principles calculations and Bayesian optimization (BO) has attracted much attention as a method for efficient material exploration. The purpose of the virtual screening is often to search for the materials whose properties meet a certain target criterion, while the conventional BO aims to find the global extremum. Some recent works use the conventional BO by converting target properties for such motivation. On the other hand, an adaptive sampling method, where the acquisition function is based on the probability that a data point achieves a target property within a specific range, is suggested previously [Kishio et al., Chemom. Intell. Lab. Syst. 127, 70 (2013)]. In this paper, we demonstrate that such adaptive sampling is effective for the exploration of the materials whose properties meet target criteria. We conducted simulations of material exploration using an in-house database constructed by first-principles calculations and compared the performance of the adaptive sampling and conventional BO approaches. Furthermore, we evaluate and discuss the performance of acquisition functions extended to multi-objective problems for material exploration, considering multiple-target properties simultaneously." @default.
- W4210925184 created "2022-02-09" @default.
- W4210925184 creator A5005237074 @default.
- W4210925184 creator A5037758351 @default.
- W4210925184 creator A5058484666 @default.
- W4210925184 creator A5074142581 @default.
- W4210925184 creator A5082104070 @default.
- W4210925184 date "2022-04-20" @default.
- W4210925184 modified "2023-10-14" @default.
- W4210925184 title "Adaptive sampling methods via machine learning for materials screening" @default.
- W4210925184 cites W1678620623 @default.
- W4210925184 cites W1798528872 @default.
- W4210925184 cites W1840001384 @default.
- W4210925184 cites W1966156734 @default.
- W4210925184 cites W1970127494 @default.
- W4210925184 cites W1979544533 @default.
- W4210925184 cites W1986731219 @default.
- W4210925184 cites W1992985800 @default.
- W4210925184 cites W1994880295 @default.
- W4210925184 cites W2011327487 @default.
- W4210925184 cites W2013795311 @default.
- W4210925184 cites W2015197254 @default.
- W4210925184 cites W2016168218 @default.
- W4210925184 cites W2029637177 @default.
- W4210925184 cites W2049681700 @default.
- W4210925184 cites W2056565309 @default.
- W4210925184 cites W2083222334 @default.
- W4210925184 cites W2084341220 @default.
- W4210925184 cites W2085093563 @default.
- W4210925184 cites W2097968133 @default.
- W4210925184 cites W2117363206 @default.
- W4210925184 cites W2123306226 @default.
- W4210925184 cites W2147720517 @default.
- W4210925184 cites W2164524421 @default.
- W4210925184 cites W2168103591 @default.
- W4210925184 cites W2172086781 @default.
- W4210925184 cites W2278970271 @default.
- W4210925184 cites W2280467629 @default.
- W4210925184 cites W2313966941 @default.
- W4210925184 cites W2342831307 @default.
- W4210925184 cites W2464725281 @default.
- W4210925184 cites W2466899395 @default.
- W4210925184 cites W2565212977 @default.
- W4210925184 cites W2703298506 @default.
- W4210925184 cites W2734520197 @default.
- W4210925184 cites W2742492277 @default.
- W4210925184 cites W2766856748 @default.
- W4210925184 cites W2793847568 @default.
- W4210925184 cites W2804431384 @default.
- W4210925184 cites W2806201317 @default.
- W4210925184 cites W2896731862 @default.
- W4210925184 cites W2903284152 @default.
- W4210925184 cites W2911964244 @default.
- W4210925184 cites W2916338083 @default.
- W4210925184 cites W2951813533 @default.
- W4210925184 cites W2952059341 @default.
- W4210925184 cites W2964169851 @default.
- W4210925184 cites W2982544823 @default.
- W4210925184 cites W3004729912 @default.
- W4210925184 cites W3010856517 @default.
- W4210925184 cites W3091796514 @default.
- W4210925184 cites W3129638015 @default.
- W4210925184 cites W3150714527 @default.
- W4210925184 cites W3184847901 @default.
- W4210925184 cites W3190863842 @default.
- W4210925184 cites W4200258481 @default.
- W4210925184 cites W4206212643 @default.
- W4210925184 doi "https://doi.org/10.1080/27660400.2022.2039573" @default.
- W4210925184 hasPublicationYear "2022" @default.
- W4210925184 type Work @default.
- W4210925184 citedByCount "2" @default.
- W4210925184 countsByYear W42109251842023 @default.
- W4210925184 crossrefType "journal-article" @default.
- W4210925184 hasAuthorship W4210925184A5005237074 @default.
- W4210925184 hasAuthorship W4210925184A5037758351 @default.
- W4210925184 hasAuthorship W4210925184A5058484666 @default.
- W4210925184 hasAuthorship W4210925184A5074142581 @default.
- W4210925184 hasAuthorship W4210925184A5082104070 @default.
- W4210925184 hasBestOaLocation W42109251841 @default.
- W4210925184 hasConcept C105795698 @default.
- W4210925184 hasConcept C106131492 @default.
- W4210925184 hasConcept C107673813 @default.
- W4210925184 hasConcept C111472728 @default.
- W4210925184 hasConcept C119857082 @default.
- W4210925184 hasConcept C127413603 @default.
- W4210925184 hasConcept C138885662 @default.
- W4210925184 hasConcept C14036430 @default.
- W4210925184 hasConcept C140779682 @default.
- W4210925184 hasConcept C146978453 @default.
- W4210925184 hasConcept C154945302 @default.
- W4210925184 hasConcept C189950617 @default.
- W4210925184 hasConcept C19499675 @default.
- W4210925184 hasConcept C204323151 @default.
- W4210925184 hasConcept C2524010 @default.
- W4210925184 hasConcept C2778049539 @default.
- W4210925184 hasConcept C2781395549 @default.
- W4210925184 hasConcept C28719098 @default.
- W4210925184 hasConcept C31972630 @default.