Matches in SemOpenAlex for { <https://semopenalex.org/work/W4210937029> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W4210937029 endingPage "4964" @default.
- W4210937029 startingPage "4952" @default.
- W4210937029 abstract "The exponential proliferation of Malware over the past decade has threatened system security across a plethora of Internet of Things (IoT) devices. Furthermore, the improvements in computer architectures to include speculative branching and out-of-order executions have engendered new opportunities for adversaries to carry out microarchitectural attacks in these devices. Both Malware and microarchitectural attacks are imperative threats to computing systems, as their behaviors range from stealing sensitive data to total system failure. With the cat-and-mouse game between Anti-Virus Software (AVS) and attackers, the frequent bolstering of AVS induces large computational overhead. Consequently, hardware performance counter (HPC)-based detection strategies augmented with machine learning (ML) classifiers have gained popularity as a low overhead solution in identifying these malicious threats. However, ML models are operated as black boxes, which results in decisions that are not human understandable. Clarity of the models’ results facilitates the development of more robust systems. Existing explainable frameworks are only capable of determining each feature’s impact on a prediction which does not provide meaningful interpretable outcomes for HPC-based intrusion detection. In this article, we address this issue by proposing an explainable HPC-based double regression (HPCDR) ML framework. Our proposed technique provides relevant transparency through isolation of the most malevolent transient window of an application, thereby allowing a user to efficiently locate the pernicious instructions within the program. We evaluated HPCDR on five microarchitectural attacks and two Malware. HPCDR was successfully able to identify the most malicious function manifested in each intrusive application." @default.
- W4210937029 created "2022-02-09" @default.
- W4210937029 creator A5004812994 @default.
- W4210937029 creator A5008783013 @default.
- W4210937029 creator A5066094401 @default.
- W4210937029 creator A5066320524 @default.
- W4210937029 creator A5076193275 @default.
- W4210937029 date "2022-11-01" @default.
- W4210937029 modified "2023-09-25" @default.
- W4210937029 title "Explainable Machine Learning for Intrusion Detection via Hardware Performance Counters" @default.
- W4210937029 cites W2024170198 @default.
- W4210937029 cites W2088503757 @default.
- W4210937029 cites W2132874238 @default.
- W4210937029 cites W2138471478 @default.
- W4210937029 cites W2163563130 @default.
- W4210937029 cites W2282821441 @default.
- W4210937029 cites W2290702548 @default.
- W4210937029 cites W2315350509 @default.
- W4210937029 cites W2337480911 @default.
- W4210937029 cites W2803900647 @default.
- W4210937029 cites W2807415350 @default.
- W4210937029 cites W2901508923 @default.
- W4210937029 cites W2932551155 @default.
- W4210937029 cites W2945698147 @default.
- W4210937029 cites W2955425106 @default.
- W4210937029 cites W2963311060 @default.
- W4210937029 cites W2976763854 @default.
- W4210937029 cites W3006781152 @default.
- W4210937029 cites W3007346474 @default.
- W4210937029 cites W3047417042 @default.
- W4210937029 cites W3116877279 @default.
- W4210937029 cites W3165348418 @default.
- W4210937029 doi "https://doi.org/10.1109/tcad.2022.3149745" @default.
- W4210937029 hasPublicationYear "2022" @default.
- W4210937029 type Work @default.
- W4210937029 citedByCount "5" @default.
- W4210937029 countsByYear W42109370292023 @default.
- W4210937029 crossrefType "journal-article" @default.
- W4210937029 hasAuthorship W4210937029A5004812994 @default.
- W4210937029 hasAuthorship W4210937029A5008783013 @default.
- W4210937029 hasAuthorship W4210937029A5066094401 @default.
- W4210937029 hasAuthorship W4210937029A5066320524 @default.
- W4210937029 hasAuthorship W4210937029A5076193275 @default.
- W4210937029 hasConcept C111919701 @default.
- W4210937029 hasConcept C119857082 @default.
- W4210937029 hasConcept C149635348 @default.
- W4210937029 hasConcept C2778579508 @default.
- W4210937029 hasConcept C2779960059 @default.
- W4210937029 hasConcept C35525427 @default.
- W4210937029 hasConcept C38652104 @default.
- W4210937029 hasConcept C41008148 @default.
- W4210937029 hasConcept C52173422 @default.
- W4210937029 hasConcept C541664917 @default.
- W4210937029 hasConceptScore W4210937029C111919701 @default.
- W4210937029 hasConceptScore W4210937029C119857082 @default.
- W4210937029 hasConceptScore W4210937029C149635348 @default.
- W4210937029 hasConceptScore W4210937029C2778579508 @default.
- W4210937029 hasConceptScore W4210937029C2779960059 @default.
- W4210937029 hasConceptScore W4210937029C35525427 @default.
- W4210937029 hasConceptScore W4210937029C38652104 @default.
- W4210937029 hasConceptScore W4210937029C41008148 @default.
- W4210937029 hasConceptScore W4210937029C52173422 @default.
- W4210937029 hasConceptScore W4210937029C541664917 @default.
- W4210937029 hasFunder F4320307103 @default.
- W4210937029 hasIssue "11" @default.
- W4210937029 hasLocation W42109370291 @default.
- W4210937029 hasOpenAccess W4210937029 @default.
- W4210937029 hasPrimaryLocation W42109370291 @default.
- W4210937029 hasRelatedWork W2003791967 @default.
- W4210937029 hasRelatedWork W2531260576 @default.
- W4210937029 hasRelatedWork W2766474512 @default.
- W4210937029 hasRelatedWork W2888879623 @default.
- W4210937029 hasRelatedWork W3012161115 @default.
- W4210937029 hasRelatedWork W3106196258 @default.
- W4210937029 hasRelatedWork W3139383759 @default.
- W4210937029 hasRelatedWork W4285588403 @default.
- W4210937029 hasRelatedWork W4320925657 @default.
- W4210937029 hasRelatedWork W4385749929 @default.
- W4210937029 hasVolume "41" @default.
- W4210937029 isParatext "false" @default.
- W4210937029 isRetracted "false" @default.
- W4210937029 workType "article" @default.