Matches in SemOpenAlex for { <https://semopenalex.org/work/W4210943669> ?p ?o ?g. }
Showing items 1 to 91 of
91
with 100 items per page.
- W4210943669 endingPage "458" @default.
- W4210943669 startingPage "446" @default.
- W4210943669 abstract "Vertebral Compression Fracture (VCF) occurs when the vertebral body partially collapses under the action of compressive forces. Non-traumatic VCFs can be secondary to osteoporosis fragility (benign VCFs) or tumors (malignant VCFs). The investigation of the etiology of non-traumatic VCFs is usually necessary, since treatment and prognosis are dependent on the VCF type. Currently, there has been great interest in using Convolutional Neural Networks (CNNs) for the classification of medical images because these networks allow the automatic extraction of useful features for the classification in a given problem. However, CNNs usually require large datasets that are often not available in medical applications. Besides, these networks generally do not use additional information that may be important for classification. A different approach is to classify the image based on a large number of predefined features, an approach known as radiomics. In this work, we propose a hybrid method for classifying VCFs that uses features from three different sources: i) intermediate layers of CNNs; ii) radiomics; iii) additional clinical and image histogram information. In the hybrid method proposed here, external features are inserted as additional inputs to the first dense layer of a CNN. A Genetic Algorithm is used to: i) select a subset of radiomic, clinical, and histogram features relevant to the classification of VCFs; ii) select hyper-parameters of the CNN. Experiments using different models indicate that combining information is interesting to improve the performance of the classifier. Besides, pre-trained CNNs presents better performance than CNNs trained from scratch on the classification of VCFs." @default.
- W4210943669 created "2022-02-09" @default.
- W4210943669 creator A5013151678 @default.
- W4210943669 creator A5019691265 @default.
- W4210943669 creator A5040638379 @default.
- W4210943669 creator A5046390902 @default.
- W4210943669 creator A5056563487 @default.
- W4210943669 creator A5056599821 @default.
- W4210943669 date "2022-02-07" @default.
- W4210943669 modified "2023-09-26" @default.
- W4210943669 title "Computer-Aided Diagnosis of Vertebral Compression Fractures Using Convolutional Neural Networks and Radiomics" @default.
- W4210943669 cites W1996313028 @default.
- W4210943669 cites W2003106423 @default.
- W4210943669 cites W2005863235 @default.
- W4210943669 cites W2019257881 @default.
- W4210943669 cites W2043223094 @default.
- W4210943669 cites W2044178924 @default.
- W4210943669 cites W2097475056 @default.
- W4210943669 cites W2105894993 @default.
- W4210943669 cites W2279560745 @default.
- W4210943669 cites W2295109081 @default.
- W4210943669 cites W2338593764 @default.
- W4210943669 cites W2343420905 @default.
- W4210943669 cites W2345010043 @default.
- W4210943669 cites W2533800772 @default.
- W4210943669 cites W2592929672 @default.
- W4210943669 cites W2767128594 @default.
- W4210943669 cites W2777186991 @default.
- W4210943669 cites W2887063112 @default.
- W4210943669 cites W2919115771 @default.
- W4210943669 cites W3025885500 @default.
- W4210943669 cites W3037334891 @default.
- W4210943669 doi "https://doi.org/10.1007/s10278-022-00586-y" @default.
- W4210943669 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35132524" @default.
- W4210943669 hasPublicationYear "2022" @default.
- W4210943669 type Work @default.
- W4210943669 citedByCount "3" @default.
- W4210943669 countsByYear W42109436692022 @default.
- W4210943669 countsByYear W42109436692023 @default.
- W4210943669 crossrefType "journal-article" @default.
- W4210943669 hasAuthorship W4210943669A5013151678 @default.
- W4210943669 hasAuthorship W4210943669A5019691265 @default.
- W4210943669 hasAuthorship W4210943669A5040638379 @default.
- W4210943669 hasAuthorship W4210943669A5046390902 @default.
- W4210943669 hasAuthorship W4210943669A5056563487 @default.
- W4210943669 hasAuthorship W4210943669A5056599821 @default.
- W4210943669 hasBestOaLocation W42109436692 @default.
- W4210943669 hasConcept C115961682 @default.
- W4210943669 hasConcept C119857082 @default.
- W4210943669 hasConcept C153180895 @default.
- W4210943669 hasConcept C154945302 @default.
- W4210943669 hasConcept C17426736 @default.
- W4210943669 hasConcept C41008148 @default.
- W4210943669 hasConcept C53533937 @default.
- W4210943669 hasConcept C75294576 @default.
- W4210943669 hasConcept C81363708 @default.
- W4210943669 hasConcept C95623464 @default.
- W4210943669 hasConceptScore W4210943669C115961682 @default.
- W4210943669 hasConceptScore W4210943669C119857082 @default.
- W4210943669 hasConceptScore W4210943669C153180895 @default.
- W4210943669 hasConceptScore W4210943669C154945302 @default.
- W4210943669 hasConceptScore W4210943669C17426736 @default.
- W4210943669 hasConceptScore W4210943669C41008148 @default.
- W4210943669 hasConceptScore W4210943669C53533937 @default.
- W4210943669 hasConceptScore W4210943669C75294576 @default.
- W4210943669 hasConceptScore W4210943669C81363708 @default.
- W4210943669 hasConceptScore W4210943669C95623464 @default.
- W4210943669 hasFunder F4320320997 @default.
- W4210943669 hasFunder F4320322025 @default.
- W4210943669 hasIssue "3" @default.
- W4210943669 hasLocation W42109436691 @default.
- W4210943669 hasLocation W42109436692 @default.
- W4210943669 hasLocation W42109436693 @default.
- W4210943669 hasOpenAccess W4210943669 @default.
- W4210943669 hasPrimaryLocation W42109436691 @default.
- W4210943669 hasRelatedWork W2066259560 @default.
- W4210943669 hasRelatedWork W2134786086 @default.
- W4210943669 hasRelatedWork W2172836935 @default.
- W4210943669 hasRelatedWork W2363530787 @default.
- W4210943669 hasRelatedWork W2537156416 @default.
- W4210943669 hasRelatedWork W2742991909 @default.
- W4210943669 hasRelatedWork W4225852842 @default.
- W4210943669 hasRelatedWork W4306753247 @default.
- W4210943669 hasRelatedWork W2181817726 @default.
- W4210943669 hasRelatedWork W3158004940 @default.
- W4210943669 hasVolume "35" @default.
- W4210943669 isParatext "false" @default.
- W4210943669 isRetracted "false" @default.
- W4210943669 workType "article" @default.