Matches in SemOpenAlex for { <https://semopenalex.org/work/W4210946108> ?p ?o ?g. }
- W4210946108 endingPage "379" @default.
- W4210946108 startingPage "369" @default.
- W4210946108 abstract "Brain-computer interface (BCI) is a useful device for people without relying on peripheral nerves and muscles. However, the performance of the event-related potential (ERP)-based BCI declines when applying it to real environments, especially in cross-state and cross-subject conditions. Here we employ temporal modeling and adversarial training to improve the visual ERP-based BCI under different mental workload states and to alleviate the problems above. The rationality of our method is that the ERP-based BCI is based on electroencephalography (EEG) signals recorded from the scalp's surface, continuously changing with time and somewhat stochastic. In this paper, we propose a hierarchical recurrent network to encode all ERP signals in each repetition at the same time and model them with a temporal manner to predict which visual event elicited an ERP. The hierarchical architecture is a simple yet effective method for organizing recurrent layers in a deep structure to model long sequence signals. Taking a cue from recent advances in adversarial training, we further applied dynamic adversarial perturbations to create adversarial examples to enhance the model performance. We conduct our experiments on one published visual ERP-based BCI task with 15 subjects and 3 different auditory workload states. The results indicate that our hierarchical method can effectively model the long sequence EEG raw data, outperform the baselines on most conditions, including cross-state and cross-subject conditions. Finally, we show how deep learning-based methods with limited EEG data can improve ERP-based BCI with adversarial training. Our code is available at https://github.com/aispeech-lab/VisBCI." @default.
- W4210946108 created "2022-02-09" @default.
- W4210946108 creator A5050899081 @default.
- W4210946108 creator A5061378893 @default.
- W4210946108 creator A5068469832 @default.
- W4210946108 creator A5071656520 @default.
- W4210946108 creator A5085128021 @default.
- W4210946108 creator A5088220636 @default.
- W4210946108 date "2022-01-01" @default.
- W4210946108 modified "2023-10-18" @default.
- W4210946108 title "Improving Cross-State and Cross-Subject Visual ERP-Based BCI With Temporal Modeling and Adversarial Training" @default.
- W4210946108 cites W1975226595 @default.
- W4210946108 cites W1975993120 @default.
- W4210946108 cites W1985638190 @default.
- W4210946108 cites W1992305955 @default.
- W4210946108 cites W2024855129 @default.
- W4210946108 cites W2029006150 @default.
- W4210946108 cites W2081931753 @default.
- W4210946108 cites W2104063964 @default.
- W4210946108 cites W2106006415 @default.
- W4210946108 cites W2112359769 @default.
- W4210946108 cites W2117654730 @default.
- W4210946108 cites W2120149678 @default.
- W4210946108 cites W2195044234 @default.
- W4210946108 cites W2283988812 @default.
- W4210946108 cites W2291835646 @default.
- W4210946108 cites W2422365436 @default.
- W4210946108 cites W2430114684 @default.
- W4210946108 cites W2517777200 @default.
- W4210946108 cites W2531704704 @default.
- W4210946108 cites W2572280252 @default.
- W4210946108 cites W2579693653 @default.
- W4210946108 cites W2741907166 @default.
- W4210946108 cites W2783914690 @default.
- W4210946108 cites W2792687613 @default.
- W4210946108 cites W2794345050 @default.
- W4210946108 cites W2801360775 @default.
- W4210946108 cites W2805953118 @default.
- W4210946108 cites W2889782437 @default.
- W4210946108 cites W2890234956 @default.
- W4210946108 cites W2898637452 @default.
- W4210946108 cites W2903462437 @default.
- W4210946108 cites W2925836809 @default.
- W4210946108 cites W2926366943 @default.
- W4210946108 cites W2944071464 @default.
- W4210946108 cites W2963355311 @default.
- W4210946108 cites W2990106473 @default.
- W4210946108 cites W2996605177 @default.
- W4210946108 cites W2999428908 @default.
- W4210946108 cites W3003417734 @default.
- W4210946108 cites W3008247505 @default.
- W4210946108 cites W3009134349 @default.
- W4210946108 cites W3013691153 @default.
- W4210946108 cites W3017642177 @default.
- W4210946108 cites W3021832062 @default.
- W4210946108 cites W3035743198 @default.
- W4210946108 cites W3036393052 @default.
- W4210946108 cites W3037247301 @default.
- W4210946108 cites W3045104022 @default.
- W4210946108 cites W3046474724 @default.
- W4210946108 cites W3081661389 @default.
- W4210946108 cites W3102455230 @default.
- W4210946108 cites W3107355261 @default.
- W4210946108 cites W3115305254 @default.
- W4210946108 cites W3155986091 @default.
- W4210946108 cites W3160555854 @default.
- W4210946108 cites W3164729656 @default.
- W4210946108 cites W3167195439 @default.
- W4210946108 cites W3172776889 @default.
- W4210946108 cites W3173284586 @default.
- W4210946108 cites W3193539565 @default.
- W4210946108 doi "https://doi.org/10.1109/tnsre.2022.3150007" @default.
- W4210946108 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35133966" @default.
- W4210946108 hasPublicationYear "2022" @default.
- W4210946108 type Work @default.
- W4210946108 citedByCount "4" @default.
- W4210946108 countsByYear W42109461082023 @default.
- W4210946108 crossrefType "journal-article" @default.
- W4210946108 hasAuthorship W4210946108A5050899081 @default.
- W4210946108 hasAuthorship W4210946108A5061378893 @default.
- W4210946108 hasAuthorship W4210946108A5068469832 @default.
- W4210946108 hasAuthorship W4210946108A5071656520 @default.
- W4210946108 hasAuthorship W4210946108A5085128021 @default.
- W4210946108 hasAuthorship W4210946108A5088220636 @default.
- W4210946108 hasBestOaLocation W42109461081 @default.
- W4210946108 hasConcept C111919701 @default.
- W4210946108 hasConcept C113843644 @default.
- W4210946108 hasConcept C118552586 @default.
- W4210946108 hasConcept C119857082 @default.
- W4210946108 hasConcept C121332964 @default.
- W4210946108 hasConcept C129307140 @default.
- W4210946108 hasConcept C153180895 @default.
- W4210946108 hasConcept C154945302 @default.
- W4210946108 hasConcept C15744967 @default.
- W4210946108 hasConcept C157915830 @default.
- W4210946108 hasConcept C162324750 @default.
- W4210946108 hasConcept C173201364 @default.
- W4210946108 hasConcept C173608175 @default.