Matches in SemOpenAlex for { <https://semopenalex.org/work/W4210954660> ?p ?o ?g. }
Showing items 1 to 63 of
63
with 100 items per page.
- W4210954660 abstract "Background Older adults presenting to emergency departments (EDs) with abdominal pain have been shown to be at high risk of subsequent morbidity and mortality. Yet, such presentations are poorly studied in national databases. Claims databases do not record the patient's symptoms at the time of presentation to the ED, but rather the diagnosis after testing and evaluation, limiting study of care and outcomes for these high risk abdominal presentations. Objectives We sought to develop an algorithm to define a patient population with potentially high risk abdominal presentations (PHRAPs) using only variables commonly available in claims data. Research Design Train a machine learning model to predict abdominal pain chief complaints using the National Hospital Ambulatory Medical Care Survey (NHAMCS), a nationally-representative database of abstracted ED medical records. Subjects All patients contained in NHAMCS data from 2013-2018. 2013-2017 were used for predictive modeling and 2018 was used as a hold-out test set. Measures Positive predictive value and sensitivity of the predictive algorithm against a hold-out test set of NHAMCS patients the algorithm was blinded to during training. Predictions were assessed for agreement with either a chief complaint of abdominal pain (contained in 'Reason for Visit 1'), or an expanded definition intended to capture visits which were for abdominal concerns. These included secondary or tertiary complaints of abdominal pain or other abdominal conditions, other abdominal-related chief complaint (e.g. nausea or diarrhea, but not pain), discharge diagnosis of an abdominal condition, or reception of an abdominal CT or ultrasound. Results After validation on a hold-out data set, a gradient boosting machine (GBM) was the best best-performing machine learning model, but a logistic regression model had similar performance and may be more explainable and useful to future researchers. The GBM predicted a chief complaint of abdominal pain with a positive predictive value of 0.60 (95% CI of 0.56, 0.64) and a sensitivity of 0.29 (95% CI of (0.27, 0.32). Nearly all false positives still exhibited signs of 'abdominal concerns' for patients: using the expanded definition of 'abdominal concern' the model had a PPV of >0.99 (95% CI of 0.99, 1.00) and sensitivity of 0.12 (95% CI of 0.11, 0.13). Conclusion The algorithm we report defines a patient population with abdominal concerns for further study of treatment and outcomes to inform the development of clinical pathways." @default.
- W4210954660 created "2022-02-13" @default.
- W4210954660 creator A5031504714 @default.
- W4210954660 creator A5034629614 @default.
- W4210954660 creator A5039795473 @default.
- W4210954660 creator A5056688528 @default.
- W4210954660 creator A5061379675 @default.
- W4210954660 date "2022-02-09" @default.
- W4210954660 modified "2023-09-27" @default.
- W4210954660 title "Algorithmic Identification of Potentially High Risk Abdominal Presentations (PHRAPs) to the Emergency Department: A Clinically-Oriented Machine Learning Approach" @default.
- W4210954660 doi "https://doi.org/10.1101/2022.02.08.22270691" @default.
- W4210954660 hasPublicationYear "2022" @default.
- W4210954660 type Work @default.
- W4210954660 citedByCount "0" @default.
- W4210954660 crossrefType "posted-content" @default.
- W4210954660 hasAuthorship W4210954660A5031504714 @default.
- W4210954660 hasAuthorship W4210954660A5034629614 @default.
- W4210954660 hasAuthorship W4210954660A5039795473 @default.
- W4210954660 hasAuthorship W4210954660A5056688528 @default.
- W4210954660 hasAuthorship W4210954660A5061379675 @default.
- W4210954660 hasBestOaLocation W42109546601 @default.
- W4210954660 hasConcept C141071460 @default.
- W4210954660 hasConcept C159110408 @default.
- W4210954660 hasConcept C17744445 @default.
- W4210954660 hasConcept C194828623 @default.
- W4210954660 hasConcept C195910791 @default.
- W4210954660 hasConcept C199539241 @default.
- W4210954660 hasConcept C2780724011 @default.
- W4210954660 hasConcept C2780838233 @default.
- W4210954660 hasConcept C2780955771 @default.
- W4210954660 hasConcept C2908647359 @default.
- W4210954660 hasConcept C35785553 @default.
- W4210954660 hasConcept C71924100 @default.
- W4210954660 hasConcept C99454951 @default.
- W4210954660 hasConceptScore W4210954660C141071460 @default.
- W4210954660 hasConceptScore W4210954660C159110408 @default.
- W4210954660 hasConceptScore W4210954660C17744445 @default.
- W4210954660 hasConceptScore W4210954660C194828623 @default.
- W4210954660 hasConceptScore W4210954660C195910791 @default.
- W4210954660 hasConceptScore W4210954660C199539241 @default.
- W4210954660 hasConceptScore W4210954660C2780724011 @default.
- W4210954660 hasConceptScore W4210954660C2780838233 @default.
- W4210954660 hasConceptScore W4210954660C2780955771 @default.
- W4210954660 hasConceptScore W4210954660C2908647359 @default.
- W4210954660 hasConceptScore W4210954660C35785553 @default.
- W4210954660 hasConceptScore W4210954660C71924100 @default.
- W4210954660 hasConceptScore W4210954660C99454951 @default.
- W4210954660 hasLocation W42109546601 @default.
- W4210954660 hasOpenAccess W4210954660 @default.
- W4210954660 hasPrimaryLocation W42109546601 @default.
- W4210954660 hasRelatedWork W2018940426 @default.
- W4210954660 hasRelatedWork W2025193597 @default.
- W4210954660 hasRelatedWork W2026095104 @default.
- W4210954660 hasRelatedWork W2096706491 @default.
- W4210954660 hasRelatedWork W2211558114 @default.
- W4210954660 hasRelatedWork W2395858416 @default.
- W4210954660 hasRelatedWork W2422785280 @default.
- W4210954660 hasRelatedWork W3210930001 @default.
- W4210954660 hasRelatedWork W3216609493 @default.
- W4210954660 hasRelatedWork W4225372502 @default.
- W4210954660 isParatext "false" @default.
- W4210954660 isRetracted "false" @default.
- W4210954660 workType "article" @default.