Matches in SemOpenAlex for { <https://semopenalex.org/work/W4210976506> ?p ?o ?g. }
Showing items 1 to 100 of
100
with 100 items per page.
- W4210976506 endingPage "132435" @default.
- W4210976506 startingPage "132435" @default.
- W4210976506 abstract "The development of safe artificial sweeteners has attracted considerable interest in the food industry. Previous machine learning (ML) studies based on quantitative structure-activity relationships have provided some molecular principles for predicting sweetness, but these models can be improved via the chemical recognition of sweetness active factors. Our ML model, a soft-vote ensemble model that has a light gradient boosting machine and uses both layered fingerprints and alvaDesc molecular descriptor features, demonstrates state-of-the-art performance, with an AUROC score of 0.961. Based on an analysis of feature importance and dataset, we identified that the number of nitrogen atoms that serve as hydrogen bond donors in molecules can play an essential role in determining sweetness. These results potentially provide an advanced understanding of the relationship between molecular structure and sweetness, which can be used to design new sweeteners based on molecular structural dependence." @default.
- W4210976506 created "2022-02-13" @default.
- W4210976506 creator A5023383066 @default.
- W4210976506 creator A5030467675 @default.
- W4210976506 creator A5070917254 @default.
- W4210976506 creator A5073725102 @default.
- W4210976506 creator A5083687252 @default.
- W4210976506 date "2022-07-01" @default.
- W4210976506 modified "2023-10-13" @default.
- W4210976506 title "BoostSweet: Learning molecular perceptual representations of sweeteners" @default.
- W4210976506 cites W1963564461 @default.
- W4210976506 cites W1972156862 @default.
- W4210976506 cites W1988037271 @default.
- W4210976506 cites W2059290290 @default.
- W4210976506 cites W2098530568 @default.
- W4210976506 cites W2099666647 @default.
- W4210976506 cites W2100563036 @default.
- W4210976506 cites W2107705485 @default.
- W4210976506 cites W2122060463 @default.
- W4210976506 cites W2132919646 @default.
- W4210976506 cites W2153613893 @default.
- W4210976506 cites W2171004217 @default.
- W4210976506 cites W2171131656 @default.
- W4210976506 cites W2171548108 @default.
- W4210976506 cites W2200017991 @default.
- W4210976506 cites W2221103459 @default.
- W4210976506 cites W2500579406 @default.
- W4210976506 cites W2571440114 @default.
- W4210976506 cites W2738819899 @default.
- W4210976506 cites W2791355014 @default.
- W4210976506 cites W2902936870 @default.
- W4210976506 cites W2911584989 @default.
- W4210976506 cites W2925919980 @default.
- W4210976506 cites W2951080103 @default.
- W4210976506 cites W2999001809 @default.
- W4210976506 cites W3012107310 @default.
- W4210976506 cites W3159215698 @default.
- W4210976506 doi "https://doi.org/10.1016/j.foodchem.2022.132435" @default.
- W4210976506 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35182866" @default.
- W4210976506 hasPublicationYear "2022" @default.
- W4210976506 type Work @default.
- W4210976506 citedByCount "5" @default.
- W4210976506 countsByYear W42109765062022 @default.
- W4210976506 countsByYear W42109765062023 @default.
- W4210976506 crossrefType "journal-article" @default.
- W4210976506 hasAuthorship W4210976506A5023383066 @default.
- W4210976506 hasAuthorship W4210976506A5030467675 @default.
- W4210976506 hasAuthorship W4210976506A5070917254 @default.
- W4210976506 hasAuthorship W4210976506A5073725102 @default.
- W4210976506 hasAuthorship W4210976506A5083687252 @default.
- W4210976506 hasConcept C119857082 @default.
- W4210976506 hasConcept C147597530 @default.
- W4210976506 hasConcept C153180895 @default.
- W4210976506 hasConcept C154945302 @default.
- W4210976506 hasConcept C15744967 @default.
- W4210976506 hasConcept C169760540 @default.
- W4210976506 hasConcept C185592680 @default.
- W4210976506 hasConcept C186060115 @default.
- W4210976506 hasConcept C26760741 @default.
- W4210976506 hasConcept C2779476700 @default.
- W4210976506 hasConcept C2780719635 @default.
- W4210976506 hasConcept C31903555 @default.
- W4210976506 hasConcept C41008148 @default.
- W4210976506 hasConcept C59593255 @default.
- W4210976506 hasConcept C86803240 @default.
- W4210976506 hasConceptScore W4210976506C119857082 @default.
- W4210976506 hasConceptScore W4210976506C147597530 @default.
- W4210976506 hasConceptScore W4210976506C153180895 @default.
- W4210976506 hasConceptScore W4210976506C154945302 @default.
- W4210976506 hasConceptScore W4210976506C15744967 @default.
- W4210976506 hasConceptScore W4210976506C169760540 @default.
- W4210976506 hasConceptScore W4210976506C185592680 @default.
- W4210976506 hasConceptScore W4210976506C186060115 @default.
- W4210976506 hasConceptScore W4210976506C26760741 @default.
- W4210976506 hasConceptScore W4210976506C2779476700 @default.
- W4210976506 hasConceptScore W4210976506C2780719635 @default.
- W4210976506 hasConceptScore W4210976506C31903555 @default.
- W4210976506 hasConceptScore W4210976506C41008148 @default.
- W4210976506 hasConceptScore W4210976506C59593255 @default.
- W4210976506 hasConceptScore W4210976506C86803240 @default.
- W4210976506 hasLocation W42109765061 @default.
- W4210976506 hasLocation W42109765062 @default.
- W4210976506 hasOpenAccess W4210976506 @default.
- W4210976506 hasPrimaryLocation W42109765061 @default.
- W4210976506 hasRelatedWork W1993646413 @default.
- W4210976506 hasRelatedWork W2014564904 @default.
- W4210976506 hasRelatedWork W2044329944 @default.
- W4210976506 hasRelatedWork W2080569495 @default.
- W4210976506 hasRelatedWork W2160168654 @default.
- W4210976506 hasRelatedWork W2896269484 @default.
- W4210976506 hasRelatedWork W3196135651 @default.
- W4210976506 hasRelatedWork W39346000 @default.
- W4210976506 hasRelatedWork W4221040227 @default.
- W4210976506 hasRelatedWork W4297910764 @default.
- W4210976506 hasVolume "383" @default.
- W4210976506 isParatext "false" @default.
- W4210976506 isRetracted "false" @default.
- W4210976506 workType "article" @default.