Matches in SemOpenAlex for { <https://semopenalex.org/work/W4210977847> ?p ?o ?g. }
- W4210977847 endingPage "176" @default.
- W4210977847 startingPage "157" @default.
- W4210977847 abstract "Free Access References Mario Cannataro, Department of Experimental Medicine and Clinic, University Magna Graecia of Catanzaro, ItalySearch for more papers by this authorPietro Hiram Guzzi, Department of Experimental Medicine and Clinic, University Magna Graecia of Catanzaro, ItalySearch for more papers by this author Book Author(s):Mario Cannataro, Department of Experimental Medicine and Clinic, University Magna Graecia of Catanzaro, ItalySearch for more papers by this authorPietro Hiram Guzzi, Department of Experimental Medicine and Clinic, University Magna Graecia of Catanzaro, ItalySearch for more papers by this author First published: 04 November 2011 https://doi.org/10.1002/9781118103746.refs Series Editor(s): Yi Pan, Search for more papers by this authorAlbert Y. Zomaya, Search for more papers by this author AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinked InRedditWechat REFERENCES Wikipedia Omics, http://en.wikipedia.org/wiki/omics. Google Scholar H. Coleridge, et al., Eds. The Oxford English Dictionary. Oxford: Oxford University Press, 2011. Google Scholar Wikipedia List of omics topics in biology, http://en.wikipedia.org/wiki/list_of_omics_topics_in_biology. Google Scholar Gerstein Lab Omes Table, http://bioinfo.mbb.yale.edu/what-is-it/omes/omes.html. Google Scholar J. Y. Chen and A. Y. Sivachenko. Data mining in protein interactomics. six computational research challenges and opportunities. IEEE Eng Med Biol Mag 24 (3): 95 – 102 (2005). CrossrefPubMedWeb of Science®Google Scholar P. Uetz and R. L. Finley. From protein networks to biological systems. FEBS Lett 579 (8): 1821 – 1827 (2005). Wiley Online LibraryCASPubMedWeb of Science®Google Scholar T. Ito, T. Chiba, R. Ozawa, M. Yoshida, M. Hattor, and Y. Sakaki. A comprehensive two - hybrid analysis to explore the yeast protein interactome. Proc Natl Acad Sci USA 98: 4569 – 4574 (2001). CrossrefCASPubMedWeb of Science®Google Scholar P. Uetz, L. Giot, G. Cagney, T. A. Mansfield, R. S. Judson, J. R. Knight, D. Lockshon, V. Narayan, M. Srinivasan, and P. Pochart. A comprehensive analysis of protein – protein interactions in Saccharomyces cerevisiae. Nature 403: 623 – 627 (2000). CrossrefCASPubMedWeb of Science®Google Scholar Yuen Ho, Albrecht Gruhler, Adrian Heilbut, Gary D. Bader, Lynda Moore, Sally - Lin Adams, Anna Millar, Paul Taylor, Keiryn Bennett, Kelly Boutilier, Lingyun Yang, Cheryl Wolting, Ian Donaldson, Soren Schandorff, Juanita Shewnarane, Mai Vo, Joanne Taggart, Marilyn Goudreault, Brenda Muskat, Cris Alfarano, Danielle Dewar, Zhen Lin, Katerina Michalickova, Andrew R. Willems, Holly Sassi, Peter A. Nielsen, Karina J. Rasmussen, Jens R. Andersen, Lene E. Johansen, Lykke H. Hansen, Hans Jespersen, Alexandre Podtelejnikov, Eva Nielsen, Janne Crawford, Vibeke Poulsen, Birgitte D. Sorensen, Jesper Matthiesen, Ronald C. Hendrickson, Frank Gleeson, Tony Pawson, Michael F. Moran, Daniel Durocher, Matthias Mann, Christopher W. V. Hogue, Daniel Figeys, and Mike Tyers. Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry. Nature 415: 180 – 183 (2002). CrossrefCASPubMedWeb of Science®Google Scholar A. C. Gavin, et al. Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature 415: 141 – 147 (2002). Wiley Online LibraryCASPubMedWeb of Science®Google Scholar P. Marcatili, G. Bussotti, and A. Tramontano. The movin server for the analysis of protein interaction networks. BMC Bioinformatics 9 (Suppl 2): S11 (2008). CrossrefCASPubMedWeb of Science®Google Scholar D. A. Fell and A. Wagner. The small world of metabolism. Nat Biotechnol 18 (11): 1121 – 1122 (2000). CrossrefCASPubMedWeb of Science®Google Scholar M. C. Golumbic. Algorithmic Graph Theory and Perfect Graphs. New York : Academic Press, 1980. Web of Science®Google Scholar EPA Interim Genomics Policy, http://epa.gov/osa/spc/pdfs/genomics.pdf. Google Scholar L. Salwinski, C. S. Miller, A. J. Smith, Frank K. Pettit, James U. Bowie, and David Eisenberg. The Database of Interacting Proteins: 2004 update. Nucleic Acids Res 32 (Suppl 1): D449 – 451 (2004). CrossrefPubMedWeb of Science®Google Scholar C. Alfarano, C. E. Andrade, K. Anthony, N. Bahroos, M. Bajec, K. Bantoft, D. Bete, B. Bobechko, K. Boutilier, E. Burgess, K. Buzadzija, R. Cavero, C. D' Abreo, I. Donaldson, D. Dorairajoo, M. J. Dumontie, M. R. Dumontier, V. Earles, R. Farral, H. Feldman, E. Garderman, Y. Gong, R. Gonzaga, V. Grytsan, E. Gryz, V. Gu, E. Haldorsen, A. Halupa, R. Haw, A. Hrvojic, L. Hurrell, R. Isserlin, F. Jack, F. Juma, A. Khan, T. Kon, S. Konopinsky, V. Le, E. Lee, S. Ling, M. Magidin, J. Moniakis, J. Montojo, S. Moore, B. Muskat, I. Ng, J. P. Paraiso, B. Parker, G. Pintilie, R. Pirone, J. J. Salama, S. Sgro, T. Shan, Y. Shu, J. Siew, D. Skinner, K. Snyder, R. Stasiuk, D. Strumpf, B. Tuekam, S. Tao, Z. Wang, M. White, R. Willis, C. Wolting, S. Wong, A. Wrong, C. Xin, R. Yao, B. Yates, S. Zhang, K. Zheng, T. Pawson, B. F. Ouellette, and C. W. Hogue. The biomolecular interaction network database and related tools 2005 update. Nucleic Acids Res 33: 418 – 424 (2005). CrossrefCASPubMedWeb of Science®Google Scholar A. Zanzoni, L. Montecchi - Palazzi, M. Quondam, G. Ausiello, M. Helmer - Citterich, and G. Cesareni. MINT: a molecular interaction database. FEBS Lett 513 (1): 135 – 140 (2002). Wiley Online LibraryCASPubMedWeb of Science®Google Scholar H. W. Mewes, D. Frishman, U. Gildener, G. Mannhaupt, K. Mayer, M. Mokrejs, B. Morgenstern, M. Minsterkitter, S. Rudd, and B. Weil. MIPS: a database for genomes and protein sequences. Nucleic Acids Res 30 (1): 31 – 34 (2002). CrossrefCASPubMedWeb of Science®Google Scholar H. Hermjakob, L. Montecchi - Palazzi, C. Lewington, S. Mudali, S. Kerrien, S. Orchard, M. Vingron, B. Roechert, P. Roepstorff, A. Valencia, H. Margalit, J. Armstrong, A. Bairoch, G. Cesareni, D. Sherman, and R. Apweiler. Intact: an open source molecular interaction database. Nucleic Acids Res 1 (32): 452 – 455 (2004). CrossrefCASWeb of Science®Google Scholar K. R. Brown and I. Jurisica. Online predicted human interaction database. Bioinformatics 21 (9): 2076 – 2082 (2005). CrossrefCASPubMedWeb of Science®Google Scholar Xia Kai, Dong Dong, and J. Han Jing - Dong. Intnetdb v 1.0 an integrated protein - protein interaction network database generated by a probabilistic model. BMC Bioinformatics 508 (7): S1 (2006). Google Scholar Damian Szklarczyk, Andrea Franceschini, Michael Kuhn, Milan Simonovic, Alexander Roth, Pablo Minguez, Tobias Doerks, Manuel Stark, Jean Muller, Peer Bork, Lars J. Jensen, and Christian von Mering. The STRING database in 2011: functional interaction networks of proteins, globally integrated and scored. Nucleic Acids Res 39: D561 – D568 (2011). CrossrefCASPubMedWeb of Science®Google Scholar Annick Lesne. Complex networks: from graph theory to biology. Lett Math Phys 78 (3): 235 – 262 (2006). CrossrefWeb of Science®Google Scholar Tero Aittokallio and Benno Schwikowski. Graph - based methods for analysing networks in cell biology. Brief Bioinform 7 (3): 243 – 255 (2006). CrossrefCASPubMedWeb of Science®Google Scholar R. Albert. Scale - free networks in cell biology. J Cell Sci 118 (Pt 21): 4947 – 4957 (2005). CrossrefCASPubMedWeb of Science®Google Scholar P. Erdos and A. Renyi. On the evolution of random graphs. Publ Math Inst Hung Acad Sci 5: 17 – 61 (1960). Google Scholar N. Przulj, D. G. Corneil, and I. Jurisica. Modeling interactome: scale - free or geometric? Bioinformatics 20 (18): 3508 – 3516 (2004). CrossrefCASPubMedWeb of Science®Google Scholar Elena Zotenko, Katia S. Guimar ï ‰ es, Raja Jothi, and Teresa M Przytyc. Decomposition of overlapping protein complexes: A graph theoretical method for analyzing static and dynamic protein associations. Algorithms Mol Biol 1: 7 (2006). CrossrefCASPubMedWeb of Science®Google Scholar A. D. King. Graph clustering with restricted neighbourhood search. Master' s thesis, University of Toronto, 2004. Google Scholar Gary Bader and Christopher Hogue. An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinformatics 4: 2 (2003). CrossrefPubMedWeb of Science®Google Scholar Melissa S. Cline, Michael Smoot, Ethan Cerami, Allan Kuchinsky, Nerius Landys, Chris Workman, Rowan Christmas, Iliana Avila -Campilo, Michael Creech, Benjamin Gross, Kristina Hanspers, Ruth Isserlin, Ryan Kelley, Sarah Killcoyne, Samad Lotia, Steven Maere, John Morris, Keiichiro Ono, Vuk Pavlovic, Alexander R. Pico, Aditya Vailaya, Peng - Liang L. Wang, Annette Adler, Bruce R. Conklin, Leroy Hood, Martin Kuiper, Chris Sander, Ilya Schmulevich, Benno Schwikowski, Guy J. Warner, Trey Ideker, and Gary D. Bader. Integration of biological networks and gene expression data using Cytoscape. Nature Protocols 2 (10): 2366 – 2382 (2007). CrossrefCASPubMedWeb of Science®Google Scholar Matthew Suderman and Michael Hallett. Tools for visually exploring biological networks. Bioinformatics 23 (20): 2651 – 2659 (2007). CrossrefCASPubMedWeb of Science®Google Scholar N. Yeung, M. S. Cline, A. Kuchinsky, M. E. Smoot, and G. D. Bader. Exploring biological networks with cytoscape software. Curr Protocols Bioinformatics, (2008), Chapter 8. Wiley Online LibraryGoogle Scholar A. Ferro, R. Giugno, G. Pigola, A. Pulvirenti, D. Skripin, G. D. D. Bader, and D. Shasha. Netmatch: a cytoscape plugin for searching biological networks. Bioinformatics 23 (7): 910 – 912 (2007). CrossrefCASPubMedWeb of Science®Google Scholar Albert-László Barabási. Scale - free networks: A decade and beyond. Science 325 (5939): 412 – 413 (2009). CrossrefCASPubMedWeb of Science®Google Scholar Reuven Cohen, Keren Erez, Daniel B. Avraham, and Shlomo Havlin. Resilience of the Internet to random breakdowns. Phys Rev Lett 85 (21): 4626 – 4628 (2000). CrossrefCASPubMedWeb of Science®Google Scholar Samuel Kerrien, Sandra Orchard, Luisa Montecchi - Palazzi, Bruno Aranda, Antony Quinn, Nisha Vinod, Gary Bader, Ioannis Xenarios, Jerome Wojcik, David Sherman, Mike Tyers, John Salama, Susan Moore, Arnaud Ceol, Andrew Chatr -aryamontri, Matthias Oesterheld, Volker Stumpfl en, Lukasz Salwinski, Jason Nerothin, Ethan Cerami, Michael Cusick, Marc Vidal, Michael Gilson, John Armstrong, Peter Woollard, Christopher Hogue, David Eisenberg, Gianni Cesareni, Rolf Apweiler, and Henning Hermjakob. Broadening the horizon — level 2.5 of the HUPO - PSI format for molecular interactions. BMC Biol 5 (1): 44 (2007). CrossrefCASPubMedWeb of Science®Google Scholar Renzo Angles and Claudio Gutierrez. Survey of graph database models. ACM Comput Surv 40 (1): 1 – 39 (2008). CrossrefWeb of Science®Google Scholar P. Aloy and R Russell. Interprets: protein interaction prediction through tertiary structure. Bioinformatics 19 (1): 161 – 162 (2003). CrossrefCASPubMedWeb of Science®Google Scholar Giovanni Nassa, Roberta Tarallo, Pietro H. Guzzi, Lorenzo Ferraro, Francesca Cirillo, Maria Ravo, Ernesto Nola, Marc Baumann, Tuula A. Nyman, Mario Cannataro, Concetta Ambrosino, and Alessandro Weisz. Comparative analysis of nuclear estrogen receptor alpha and beta interactomes in breast cancer cells. Mol BioSyst 7: 667 – 676 (2011). CrossrefCASPubMedWeb of Science®Google Scholar P. Andrew Futreal, Lachlan Coin, Mhairi Marshall, Thomas Down, Timothy Hubbard, Richard Wooster, Nazneen Rahman, and Michael R. Stratton. A census of human cancer genes. Nat Rev Cancer 4 (3): 177 – 183 (2004). CrossrefCASPubMedWeb of Science®Google Scholar C. S. Williams, and Ed. Cho. An Omics Perspective on Cancer Research. New York : Springer, 2010. Google Scholar C. Hultschig, J. Kreutzberger, H. Seitz, Z. Konthur, K. Bussow, and H. Lehrach. Recent advances of protein microarrays. Curr Opin Chem Biol 10: 4 – 10 (2006). CrossrefCASPubMedWeb of Science®Google Scholar Y. Kawahashi, N. Doi, H. Takashima, C. Tsuda, Y. Oishi, R. Oyama, M. Yonezawa, E. Miyamoto - Sato, and H. Yanagawa. In vitro protein microarrays for detecting protein - protein interactions: application of a new method for fl uorescence labeling of proteins. Proteomics 3: 1236 – 1243 (2003). Wiley Online LibraryCASPubMedWeb of Science®Google Scholar K. Bussow, D. Cahill, W. Nietfeld, D. Bancroft, E. Scherzinger, H. Lehrach, and G. Walter. A method for global protein expression and antibody screening on high - density filters of an arrayed cdna library. Nucleic Acids Res 26: 5007 – 5008 (1998). CrossrefCASPubMedWeb of Science®Google Scholar H. Zhu, M. Bilgin, D. Bangham, A. Hall, P. Casamayor, N. Bertone, R. Lan, S. Jansen, T. Bidlingmaier, T. Houfek, P. Mitchell, R. A. Miller, M. Dean, M. Gerstein, and M. Snyder. Global analysis of protein activities using proteome chips. Science 293: 2101 – 2105 (2001). CrossrefCASPubMedWeb of Science®Google Scholar S. M. Chan, J. Ermann, L. Su, C. G. Fathman, and P. J. Uetz. Protein microarrays for multiplex analysis of signal transduction pathways. Nat Med 10: 1390 – 1396 (2004). CrossrefCASPubMedWeb of Science®Google Scholar Arnaud Droit, Guy Poirier, and Johanna Hunter. Experimental and bioinformatic approaches for interrogating protein – protein interactions to determine protein function. J Mol Endocrinol 34: 263 – 280 (2005). CrossrefCASPubMedWeb of Science®Google Scholar S. Orchard, H. Hermjakob, C. F. Taylor, F. Potthast, P. Jones, W. Zhu, R. K. J. Julian, and R. Apweiler. Further steps in standardisation. report of the second annual proteomics standards initiative spring workshop (Siena, Italy 17 – 20th April 2005). Proteomics 5: 3553 – 3555 (2005). Google Scholar H. Hermjakob, et al. The HUPO PSI' s molecular interaction format— — a community standard for the representation of protein interaction data. Nat Biotechnol 22 (2): 177 – 183 (2004). CrossrefCASPubMedWeb of Science®Google Scholar G. Rigaut, A. Shevchenko, B. Rutz, M. Wilm, M. Mann, and B. Seraphin. A generic protein purification method for protein complex characterization and proteome exploration. Nat Biotechnol 17: 1030 – 1032 (1999). CrossrefCASPubMedWeb of Science®Google Scholar J. A. Ranish, E. C. Yi, D. M. Leslie, S. O. Purvine, D. R. Goodlett, J. Eng, and R. Aebersold. The study of macromolecular complexes by quantitative proteomics. Nat Genetics 33: 349 – 355 (2003). CrossrefCASPubMedWeb of Science®Google Scholar K. G. Standing. Peptides and protein de novo sequencing via MS. Curr Opin Struct Biol 1 (13): 595 – 601 (2003). CrossrefCASWeb of Science®Google Scholar S. Gygi, B. Rist, S. Gerber, F. Turecek, M. Gelb, and R. Aebersold. Quantitative analysis of complex protein mixtures using isotope - coded affinity tags. Nat Biotechnol 17 (10): 994 – 999 (1999). CrossrefCASPubMedWeb of Science®Google Scholar S. Fields and O. Song. A novel genetic system to detect protein - protein interactions. Nature 340 (6230): 245 – 246 (1989). CrossrefCASPubMedWeb of Science®Google Scholar S. Fields and R. Sternglanz. The two - hybrid system: an assay for protein- protein interactions. Trends Genetics 10: 286 – 292 (1994). CrossrefCASPubMedWeb of Science®Google Scholar N. Bertin, S. Li, and C. M. Armstrong. A map of the interactome network of the Metazoan c. elegans. Science 303 (5657): 540 – 543 (2004). CrossrefCASPubMedWeb of Science®Google Scholar L. Giot, J. S. Bader, et al. A protein interaction map of drosophila melanogaster. Science 302 (5651): 1727 – 1736 (2003). CrossrefCASPubMedWeb of Science®Google Scholar J. C. Rain, L. Selig, H. De Reuse, et al. The protein - protein interaction map of Helicobacter pylori. Nature 409 (6817): 211 – 215 (2001). CrossrefCASPubMedWeb of Science®Google Scholar E. Hutter and J. Fendler. Exploitation of localized surface plasmon resonance. Resonance Adv Mater 16 (19): 1685 – 1706 (2004). Wiley Online LibraryCASWeb of Science®Google Scholar K. Aslan, J. R. Lakowicz, and C. Geddes. Plasmon light scattering in biology and medicine: new sensing approaches, visions and perspectives. Curr Opin Chem Biol 5 (9): 538 – 544 (2005). CrossrefCASWeb of Science®Google Scholar E. A. Smith and R. M. Corn. Surface plasmon resonance imaging as a tool to monitor biomolecular interactions in an array based format. Appl Spectrosc 57: 320A – 332A (2003). CrossrefCASPubMedWeb of Science®Google Scholar M. Deng, F. Sun, and T. Chen. Assessment of the reliability of protein – protein interactions and protein function prediction. Proc. of Pacific Symposium Biocomputing (Grand Wailea, Maui, Hawaii). Singapore: World Scientific, 2003, pp. 140 – 151 Google Scholar D. J. Watts and S. H. Strogatz. Collective dynamics of “ small - world ” networks. Nature 393 (6684): 440 – 442 (1998). CrossrefCASPubMedWeb of Science®Google Scholar Juhani Nieminen. On the centrality in a graph. Scand J Psychol 15 (1): 332 – 336 (1974). Wiley Online LibraryCASPubMedWeb of Science®Google Scholar Kazuya Okamoto, Wei Chen, and Xiang - Yang Li. Ranking of Closeness Centrality for Large - Scale Social Networks, Frontiers in Algorithmics. Franco P. Preparata, Xiaodong Wu, and Jianping Yin, Eds. Lecture Notes in Computer Science, Vol. 5059, Berlin : Springer, 2008, pp. 186 – 195. CrossrefGoogle Scholar Ulrik Brandes. A faster algorithm for betweenness centrality. J Math Sociol 25: 163 – 177 (2001). CrossrefWeb of Science®Google Scholar M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of np - Completeness, Series of Books in the Mathematical Sciences. New York: Freeman, 1979. Google Scholar Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction to Algorithms, 2nd ed. New York : McGraw - Hill, 2003. Google Scholar J. R. Ullmann. An algorithm for subgraph isomorphism. J ACM 23 (1): 31 – 42 (1976). CrossrefWeb of Science®Google Scholar M. Hucka, A. Finney, H. M. Sauro, H. Bolouri, J. C. Doyle, R Kitano, A. P. Arkin, B. J. Bornstein, D. Bray, A. Cornish - Bowden, A. A. Cuellar, S. Dronov, E. D. Gilles, M. Ginkel, V. Gor, I. I. Goryanin, W. J. Hedley, T. C. Hodgman, J. - H. Hofmeyr, P. J. Hunter, N. S. Juty, J. L. Kasberger, A. Kremling, U. Kummer, N. Le Novere, L. M. Loew, D. Lucio, P. Mendes, E. Minch, E. D. Mjolsness, Y. Nakayama, M. R. Nelson, P. F. Nielsen, T. Sakurada, J. C. Schaff, B. E. Shapiro, T. S. Shimizu, H. D. Spence, J. Stelling, K. Takahashi, M. Tomita, J. Wagner, and J Wang. The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models. Bioinformatics 19 (4): 524 – 531 (2003). CrossrefCASPubMedWeb of Science®Google Scholar Joanne Luciano and Robert D. Stevens. e - science and biological pathway semantics. BMC Bioinformatics 8 (Suppl 3): S1 (2007). CrossrefCASWeb of Science®Google Scholar R. A. Bradshaw, A. L. Burlingame, S. Carr, and R. Aebersold. Reporting protein identification data: the next generation of guidelines. Mol Cell Proteomics 5: 787 – 788 (2006). CrossrefCASPubMedWeb of Science®Google Scholar Barry Smith, Michael Ashburner, Cornelius Rosse, Jonathan Bard, William Bug, Werner Ceusters, Louis J. Goldberg, Karen Eilbeck, Amelia Ireland, Christopher J. Mungall, Neocles Leontis, Philippe Rocca - Serra, Alan Ruttenberg, Susanna - Assunta Sansone, Richard H. Scheuermann, Nigam Shah, Patricia L. Whetzel, and Suzanna Lewis. The OBO Foundry: coordinated evolution of ontologies to support biomedical data integration. Nat Biotechnol 25 (11): 1251 – 1255 (2007). CrossrefCASPubMedWeb of Science®Google Scholar S. Orchard, S. Kerrien, P. Jones, A. Ceol, A. Chatr - Aryamontri, L. Salwinski, J. Nerothin, and H. Hermjakob. Submit your interaction data the imex way: a step by step guide to trouble - free deposition. Proteomics 7 (S1): 28 – 34 (2007). Wiley Online LibraryCASPubMedGoogle Scholar Laure Sambourg and Nicolas Thierry - Mieg. New insights into protein - protein interaction data lead to increased estimates of the S. cerevisiae interactome size. BMC Bioinformatics 11 (1): 605 (2010). CrossrefPubMedWeb of Science®Google Scholar Gautam Chaurasia, Yasir Iqbal, Christian Hanig, Hanspeter Herzel, Erich E. Wanker, and Matthias E. Futschik. UniHI: an entry gate to the human protein interactome. Nucleic Acids Res 35 (Suppl 1): D590 – 594 (2007). CrossrefCASPubMedWeb of Science®Google Scholar Shihua Zhang, Xiang - Sun Zhang, and Luonan Chen. Biomolecular network querying: a promising approach in systems biology. BMC Syst Biol 2 (1): 5 (2008). CrossrefPubMedWeb of Science®Google Scholar Andrew Chatr - aryamontri, Arnaud Ceol, Daniele Peluso, Aurelio Nardozza, Simona Panni, Francesca Sacco, Michele Tinti, Alex Smolyar, Luisa Castagnoli, Marc Vidal, Michael E. Cusick, and Gianni Cesareni. VirusMINT: a viral protein interaction database. Nucleic Acids Res 37 (Suppl 1): D669 – 673 (2009). CrossrefCASPubMedWeb of Science®Google Scholar Maria Persico, Arnaud Ceol, Caius Gavrila, Robert Hoffmann, Arnaldo Florio, and Gianni Cesareni. HomoMINT: an inferred human network based on orthology mapping of protein interactions discovered in model organisms. BMC Bioinformatics 6 (Suppl 4): S21 + (2005). CrossrefCASPubMedWeb of Science®Google Scholar Nevan J. Krogan, Gerard Cagney, Haiyuan Yu, Gouqing Zhong, Xinghua Guo, Alexandr Ignatchenko, Joyce Li, Shuye Pu, Nira Datta, Aaron P. Tikuisis, Thanuja Punna, Jose Peregra Alvares, Michael Shales, Xin Zhang, Michael Davey, Mark D. Robinson, Alberto Paccanaro, James E. Bray, Anthony Sheung, Bryan Beattie, Dawn P. Richards, Veronica Canadien, Atanas Lalev, Frank Mena, Peter Wong, Andrei Starostine, Myra M. Canete, James Vlasblom, Samuel Wu, Chris Orsi, Sean R. Collins, Shamanta Chandran, Robin Haw, Jennifer J. Rilstone, Kiran Gandi, Natalie J. Thompson, Gabe Musso, Peter St Onge, Shaun Ghanny, Mandy H. Y. Lam, Gareth Butland, Amin M. Altaf - Ul, Shigehiko Kanaya, Ali Shilatifard, Erin O' Shea, Jonathan S. Weissman, C.James Ingles, Timothy R. Hughes, John Parkinson, Mark Gerstein, Shoshana J. Wodak, Andrew Emili, and Jack F. Greenblatt. Global landscape of protein complexes in the yeast Saccharomyces cerevisiae. Nature 440: 637 – 643 (2006). CrossrefCASPubMedWeb of Science®Google Scholar Chu Wei, Ghahramani Zoubin, Krause Roland, and Wild David. Identifying Protein Complexes in High - Throughput Protein Interaction Screens Using an Infinite Latent Feature Model, Pacific Symposium Biocomputing (Grand Wailea, Maui, Hawaii). Russ B. Altman, Tiffany Murray, Teri E. Klein, A. Keith Dunker, and Lawrence Hunter, Eds. Singapore : World Scientific, 2006. Google Scholar S. Brohee and J. van Helden. Evaluation of clustering algorithms for protein - protein interaction networks. BMC Bioinformatics 7: 488 (2006). CrossrefCASPubMedWeb of Science®Google Scholar Saurabh Asthana, Oliver D. King, Francis D. Gibbons, and Frederick P. Roth. Predicting protein complex membership using probabilistic network reliability. Genome Res 14 (6): 1170 – 1175 (2004). CrossrefCASPubMedWeb of Science®Google Scholar B. Aranda, P. Achuthan, Y. Alam - Faruque, I. Armean, A. Bridge, C. Derow, M. Feuermann, A. T. Ghanbarian, S. Kerrien, J. Khadake, J. Kerssemakers, C. Leroy, M. Menden, M. Michaut, L. Montecchi - Palazzi, S. N. Neuhauser, S. Orchard, V. Perreau, B. Roechert, K. van Eijk, and H. Hermjakob. The IntAct molecular interaction database in 2010. Nucleic Acids Res 38: 878 – 531 (2010). CrossrefCASPubMedWeb of Science®Google Scholar M. A. Harris, J. Clark, A. Ireland, J. Lomax, M. Ashburner, R. Foulger, K. Eilbeck, S. Lewis, B. Marshall, C. Mungall, J. Richter, G. M. Rubin, J. A. Blake, C. Bult, M. Dolan, H. Drabkin, J. T. Eppig, D. P. Hill, L. Ni, M. Ringwald, R. Balakrishnan, J. M. Cherry, K. R. Christie, M. C. Costanzo, S. S. Dwight, S. Engel, D. G. Fisk, J. E. Hirschman, E. L. Hong, R. S. Nash, A. Sethuraman, C. L. Theesfeld, D. Botstein, K. Dolinski, B. Feierbach, T. Berardini, S. Mundodi, S. Y. Rhee, R. Apweiler, D. Barrell, E. Camon, E. Dimmer, V. Lee, R. Chisholm, P. Gaudet, W. Kibbe, R. Kishore, E. M. Schwarz, P. Sternberg, M. Gwinn, L. Hannick, J. Wortman, M. Berriman, V. Wood, P. Tonellato, P. Jaiswal, T. Seigfried, and R. White. The gene ontology (GO) database and informatics resource. Nucleic Acids Res 32: 258 – 261 (2004). CrossrefCASPubMedWeb of Science®Google Scholar D. L. Wheeler, C. Chappey, A. Lash, D. D. Leipe, T. L. Madden, G. D. Schuler, T. A. Tatusova, and B. A. Rapp. Database resources of national center for biotechnology information. Nucleic Acid Res 28: 10 – 14 (2000). CrossrefCASPubMedWeb of Science®Google Scholar Chris Stark, Bobby - Joe Breitkreutz, Andrew Chatr - Aryamontri, Lorrie Boucher, Rose Oughtred, Michael S. Livstone, Julie Nixon, Kimberly Van Auken, Xiaodong Wang, Xiaoqi Shi, Teresa Reguly, Jennifer M. Rust, Andrew Winter, Kara Dolinski, and Mike Tyers. The BioGRID Interaction Database: 2011 update. Nucleic Acids Res 39 (Suppl 1): D698 – D704 (2011). CrossrefCASPubMedWeb of Science®Google Scholar E. Sprinzak and H. Margalit. Correlated sequence - signatures as markers of protein - protein interaction. J Mol Biol 23 (311): 681 – 692 (2001). CrossrefCASWeb of Science®Google Scholar S. J. Cockell, B. Oliva, and R. M. Jackson. Structure - based evaluation of in silico predictions of protein - protein interactions using Comparative Docking. Bioinformatics 23 (5): 573 – 581 (2007). CrossrefCASPubMedWeb of Science®Google Scholar Kevin Brown and Igor Jurisica. Unequal evolutionary conservation of human protein interactions in interologous networks. Genome Biol 8 (5): R95 + (2007). CrossrefCASPubMedWeb of Science®Google Scholar P. Pagel, H. W. Mewes, and D. Frishman. Conservation of protein - protein interactions — lessons from ascomycota. Trends Genetics 20 (2): 72 – 76 (2004). CrossrefCASPubMedWeb of Science®Google Scholar S. F. Altschul, T. L. Madden, A. A. Sch ä ffer, J. Zhang, Z. Zhang, W. Miller, and D. J. Lipman. Gapped BLAST and PSI - BLAST: a new generation of protein database search programs. Nucleic Acids Res 25 (17): 3389 – 3402 (1997). CrossrefCASPubMedWeb of Science®Google Scholar Kevin R. Brown, David Otasek, Muhammad Ali, Michael J. McGuffin, Wing Xie, Baiju Devani, Ian Lawson van Toch, and Igor Jurisica. NAViGaTOR: Network Analysis, Visualization and Graphing Toronto. Bioinformatics 25 (24): 3327 – 3329 (2009). CrossrefCASPubMedWeb of Science®Google Scholar Kai Xia, Dong Dong, and Jing - Dong D. Han. IntNetDB v1.0: an integrated protein - protein interaction network database generated by a probabilistic model. BMC Bioinformatics 7: 508 + (2006). CrossrefCASPubMedWeb of Science®Google Scholar Tao - Wei Huang, An - Chi Tien, Wen - Shien Huang, Yuan - Chii G. Lee, Chin - Lin Peng, Huei - Hun Tseng, Cheng - Yan Kao, and Chi - Ying F. Huang. Point: a database for the prediction of protein - protein interactions based on the orthologous interactome. Bioinformatics 20 (17): 3273 – 3276 (2004). CrossrefCASWeb of Science®Google Scholar Matthias E. Futschik, Gautam Chaurasia, and Hanspeter Herzel. Comparison of human protein - protein interaction maps. Bioinformatics 23 (5): 605 – 611 (2007). CrossrefCASPubMedWeb of Science®Google Scholar Mario Cannataro, Pietro H. Guzzi, and Pierangelo Veltri. Protein - to - protein interactions: Technologies, databases, and algorithms. ACM Comput Surv 43 (1): 1 – 36 (2010). CrossrefWeb of Science®Google Scholar Jake Chen, SudhaRani Mamidipalli, and Tianxiao Huan. Happi: an online database of comprehensive human annotated and predicted protein interactions. BMC Genomics 10 (Suppl 1): S16 (2009). CrossrefCASPubMedWeb of Science®Google Scholar T. S. Keshava Prasad, Renu Goel, Kumaran Kandasamy, Shivakumar Keerthikumar, Sameer Kumar, Suresh Mathivanan, Deepthi Telikicherla, Rajesh Raju, Beema Shaf" @default.
- W4210977847 created "2022-02-13" @default.
- W4210977847 date "2011-11-04" @default.
- W4210977847 modified "2023-10-13" @default.
- W4210977847 title "References" @default.
- W4210977847 cites W1485582261 @default.
- W4210977847 cites W1498834900 @default.
- W4210977847 cites W1512367497 @default.
- W4210977847 cites W1524662923 @default.
- W4210977847 cites W1527927437 @default.
- W4210977847 cites W1536060130 @default.
- W4210977847 cites W1575542444 @default.
- W4210977847 cites W1589640109 @default.
- W4210977847 cites W1608160693 @default.
- W4210977847 cites W1639696487 @default.
- W4210977847 cites W1644749979 @default.
- W4210977847 cites W1668625893 @default.
- W4210977847 cites W1781293113 @default.
- W4210977847 cites W1783384641 @default.
- W4210977847 cites W1811927564 @default.
- W4210977847 cites W1842847600 @default.
- W4210977847 cites W1877439477 @default.
- W4210977847 cites W1958599709 @default.
- W4210977847 cites W1966162389 @default.
- W4210977847 cites W1966631994 @default.
- W4210977847 cites W1970360171 @default.
- W4210977847 cites W1970759948 @default.
- W4210977847 cites W1977186059 @default.
- W4210977847 cites W1978920477 @default.
- W4210977847 cites W1980948656 @default.
- W4210977847 cites W1982428412 @default.
- W4210977847 cites W1984220047 @default.
- W4210977847 cites W1985695385 @default.
- W4210977847 cites W1989921625 @default.
- W4210977847 cites W1994095991 @default.
- W4210977847 cites W1995213405 @default.
- W4210977847 cites W1998712492 @default.
- W4210977847 cites W2000815456 @default.
- W4210977847 cites W2006933206 @default.
- W4210977847 cites W2017248899 @default.
- W4210977847 cites W2022583501 @default.
- W4210977847 cites W2027264060 @default.
- W4210977847 cites W2037036397 @default.
- W4210977847 cites W2040941311 @default.
- W4210977847 cites W2049883028 @default.
- W4210977847 cites W2050401089 @default.
- W4210977847 cites W2050721857 @default.
- W4210977847 cites W2053248591 @default.
- W4210977847 cites W2056124433 @default.
- W4210977847 cites W2057545775 @default.
- W4210977847 cites W2057949133 @default.
- W4210977847 cites W2060948468 @default.
- W4210977847 cites W2065304353 @default.
- W4210977847 cites W2068705129 @default.
- W4210977847 cites W2068897525 @default.
- W4210977847 cites W2069703496 @default.
- W4210977847 cites W2075019355 @default.
- W4210977847 cites W2075773171 @default.
- W4210977847 cites W2079007492 @default.
- W4210977847 cites W2080182143 @default.
- W4210977847 cites W2080922074 @default.
- W4210977847 cites W2084168100 @default.
- W4210977847 cites W2087572685 @default.
- W4210977847 cites W2088048878 @default.
- W4210977847 cites W2088062845 @default.
- W4210977847 cites W2088412871 @default.
- W4210977847 cites W2091686779 @default.
- W4210977847 cites W2091741926 @default.
- W4210977847 cites W2091789479 @default.
- W4210977847 cites W2092836572 @default.
- W4210977847 cites W2093529889 @default.
- W4210977847 cites W2097432956 @default.
- W4210977847 cites W2097950642 @default.
- W4210977847 cites W2098999612 @default.
- W4210977847 cites W2099202583 @default.
- W4210977847 cites W2099495349 @default.
- W4210977847 cites W2100761975 @default.
- W4210977847 cites W2101750553 @default.
- W4210977847 cites W2102057828 @default.
- W4210977847 cites W2102140136 @default.
- W4210977847 cites W2102992354 @default.
- W4210977847 cites W2104084103 @default.
- W4210977847 cites W2104315543 @default.
- W4210977847 cites W2104360366 @default.
- W4210977847 cites W2105302963 @default.
- W4210977847 cites W2105928352 @default.
- W4210977847 cites W2106187536 @default.
- W4210977847 cites W2108491719 @default.
- W4210977847 cites W2110025254 @default.
- W4210977847 cites W2111208057 @default.
- W4210977847 cites W2111627817 @default.
- W4210977847 cites W2111786937 @default.
- W4210977847 cites W2111795091 @default.
- W4210977847 cites W2111823238 @default.
- W4210977847 cites W2112090702 @default.
- W4210977847 cites W2112200469 @default.
- W4210977847 cites W2112262143 @default.
- W4210977847 cites W2112456433 @default.