Matches in SemOpenAlex for { <https://semopenalex.org/work/W4210990502> ?p ?o ?g. }
- W4210990502 endingPage "18" @default.
- W4210990502 startingPage "1" @default.
- W4210990502 abstract "In order to effectively reduce the energy consumption, improve the efficiency of data collection in HWSNs, and prolong the lifetime of the overall network, the clustering method is one of the most effective methods in the data collection methods for HWSNs. The data collection strategy of HWSNs based on the clustering method mainly includes three stages: (1) selecting the appropriate cluster head, (2) forming between clusters, and (3) transferring data between clusters. Among them, the selection of the cluster heads in the first stage. The optimal number of cluster heads in the formation of clusters in the second stage is the core and key to the clustering data collection of HWSNs. In the stage of cluster head selection, a data collection strategy for HWSNs based on the clustering method is proposed. Sink establishes an extreme learning machine neural network model. The cluster member nodes select cluster heads based on the remaining energy of the sensor node, the number of the neighbor node, and the distance to the sink. The best cluster head node is selected through the adaptive learning of the online sequence extreme learning machine. Through comprehensive consideration of various factors to complete the clustering process, the gray wolf algorithm is used to optimize the number of clusters, balance the effect of clustering, and improve the efficiency of data collection while reducing energy consumption. An energy efficient and reliable clustering data collection strategy for HWSNs based on the online sequence extreme learning machine and the gray wolf optimization algorithm is proposed in this paper. The simulation results show that the proposed algorithm not only significantly improves the efficiency of the data collection and reduces energy consumption but also comprehensively improves the reliability of the network and prolongs the network’s lifetime." @default.
- W4210990502 created "2022-02-13" @default.
- W4210990502 creator A5006993319 @default.
- W4210990502 creator A5022234641 @default.
- W4210990502 creator A5046034866 @default.
- W4210990502 creator A5068381772 @default.
- W4210990502 creator A5080087400 @default.
- W4210990502 date "2022-02-08" @default.
- W4210990502 modified "2023-10-14" @default.
- W4210990502 title "Data Collection Strategy Based on OSELM and Gray Wolf Optimization Algorithm for Wireless Sensor Networks" @default.
- W4210990502 cites W2268226481 @default.
- W4210990502 cites W2464879176 @default.
- W4210990502 cites W2469821678 @default.
- W4210990502 cites W2471300670 @default.
- W4210990502 cites W2582203936 @default.
- W4210990502 cites W2743826023 @default.
- W4210990502 cites W2749787081 @default.
- W4210990502 cites W2756446956 @default.
- W4210990502 cites W2780890119 @default.
- W4210990502 cites W2790446931 @default.
- W4210990502 cites W2791660987 @default.
- W4210990502 cites W2795074553 @default.
- W4210990502 cites W2795901884 @default.
- W4210990502 cites W2796286502 @default.
- W4210990502 cites W2796325360 @default.
- W4210990502 cites W2800520033 @default.
- W4210990502 cites W2802713807 @default.
- W4210990502 cites W2810786926 @default.
- W4210990502 cites W2871832352 @default.
- W4210990502 cites W2902335478 @default.
- W4210990502 cites W2909996676 @default.
- W4210990502 cites W2913367076 @default.
- W4210990502 cites W2942105643 @default.
- W4210990502 cites W2955249127 @default.
- W4210990502 cites W2969890106 @default.
- W4210990502 cites W2976125381 @default.
- W4210990502 cites W3017276296 @default.
- W4210990502 cites W3108141335 @default.
- W4210990502 cites W3122434286 @default.
- W4210990502 cites W3125569183 @default.
- W4210990502 doi "https://doi.org/10.1155/2022/4489436" @default.
- W4210990502 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35178077" @default.
- W4210990502 hasPublicationYear "2022" @default.
- W4210990502 type Work @default.
- W4210990502 citedByCount "8" @default.
- W4210990502 countsByYear W42109905022022 @default.
- W4210990502 countsByYear W42109905022023 @default.
- W4210990502 crossrefType "journal-article" @default.
- W4210990502 hasAuthorship W4210990502A5006993319 @default.
- W4210990502 hasAuthorship W4210990502A5022234641 @default.
- W4210990502 hasAuthorship W4210990502A5046034866 @default.
- W4210990502 hasAuthorship W4210990502A5068381772 @default.
- W4210990502 hasAuthorship W4210990502A5080087400 @default.
- W4210990502 hasBestOaLocation W42109905021 @default.
- W4210990502 hasConcept C105795698 @default.
- W4210990502 hasConcept C119599485 @default.
- W4210990502 hasConcept C124101348 @default.
- W4210990502 hasConcept C127413603 @default.
- W4210990502 hasConcept C133462117 @default.
- W4210990502 hasConcept C154945302 @default.
- W4210990502 hasConcept C24590314 @default.
- W4210990502 hasConcept C2780150128 @default.
- W4210990502 hasConcept C2780165032 @default.
- W4210990502 hasConcept C31258907 @default.
- W4210990502 hasConcept C33923547 @default.
- W4210990502 hasConcept C41008148 @default.
- W4210990502 hasConcept C50644808 @default.
- W4210990502 hasConcept C73555534 @default.
- W4210990502 hasConceptScore W4210990502C105795698 @default.
- W4210990502 hasConceptScore W4210990502C119599485 @default.
- W4210990502 hasConceptScore W4210990502C124101348 @default.
- W4210990502 hasConceptScore W4210990502C127413603 @default.
- W4210990502 hasConceptScore W4210990502C133462117 @default.
- W4210990502 hasConceptScore W4210990502C154945302 @default.
- W4210990502 hasConceptScore W4210990502C24590314 @default.
- W4210990502 hasConceptScore W4210990502C2780150128 @default.
- W4210990502 hasConceptScore W4210990502C2780165032 @default.
- W4210990502 hasConceptScore W4210990502C31258907 @default.
- W4210990502 hasConceptScore W4210990502C33923547 @default.
- W4210990502 hasConceptScore W4210990502C41008148 @default.
- W4210990502 hasConceptScore W4210990502C50644808 @default.
- W4210990502 hasConceptScore W4210990502C73555534 @default.
- W4210990502 hasFunder F4320322186 @default.
- W4210990502 hasLocation W42109905021 @default.
- W4210990502 hasLocation W42109905022 @default.
- W4210990502 hasLocation W42109905023 @default.
- W4210990502 hasLocation W42109905024 @default.
- W4210990502 hasOpenAccess W4210990502 @default.
- W4210990502 hasPrimaryLocation W42109905021 @default.
- W4210990502 hasRelatedWork W1535817134 @default.
- W4210990502 hasRelatedWork W1537044748 @default.
- W4210990502 hasRelatedWork W2142809861 @default.
- W4210990502 hasRelatedWork W2161862272 @default.
- W4210990502 hasRelatedWork W2523449796 @default.
- W4210990502 hasRelatedWork W26229282 @default.
- W4210990502 hasRelatedWork W2807056155 @default.
- W4210990502 hasRelatedWork W3119417306 @default.
- W4210990502 hasRelatedWork W3122825514 @default.