Matches in SemOpenAlex for { <https://semopenalex.org/work/W4211000833> ?p ?o ?g. }
- W4211000833 endingPage "198" @default.
- W4211000833 startingPage "177" @default.
- W4211000833 abstract "Free Access References Prof. Petra Reinke, Prof. Petra Reinke University of Virginia, Dept. of Mat. Science and Eng., 395, McCormick Road, Charlottesville, VA 22904, USASearch for more papers by this author Book Author(s):Prof. Petra Reinke, Prof. Petra Reinke University of Virginia, Dept. of Mat. Science and Eng., 395, McCormick Road, Charlottesville, VA 22904, USASearch for more papers by this author First published: 14 March 2012 https://doi.org/10.1002/9783527645909.refs AboutPDFPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShareShare a linkShare onFacebookTwitterLinked InRedditWechat References Bell, A.T. (2003) The impact of nanoscience on heterogeneous catalysis. Science, 299, 1688. Haruta, M. (1997) Size- and support dependency in the catalysis of gold. Catal. Today, 36, 153. Choudhary, T.V. and Goodman, D.W. (2005) Catalytically active gold: the role of cluster morphology. Appl. Catal. A: Gen., 291, 32. Chen, F., Ramayya, E.B., Euaruksakul, C., Himpsel, F.J., Celler, G.K., Ding, B., Knezevic, I., and Lagally, M.G. (2010) Quantum confinement, surface roughness, and the conduction band structure of ultrathin silicon membranes. ACS Nano, 4, 2466. Hybertson, M.S. and Needels, M. (1993) First-principles analysis of electronic states in silicon nanoscale quantum wires. Phys. Rev. B, 48, 4608. Sanders, G.D., Stanton, C.J., and Chang, Y.C. (1993) Theory of transport in silicon quantum wires. Phys. Rev. B, 48, 11067. Yu, P.Y. and Cardona, M. (1996) Fundamentals of Semiconductors – Physics and Materials Properties, Springer-Verlag, Berlin, New York. Crommie, M.F., Lutz, C.P., and Eigler, D.M. (1993) Imaging standing waves in a two-dimensional electron gas. Nature, 363, 524. Fiete, G.A. and Heller, E.J. (2003) Colloqium: theory of quantum corrals and quantum mirages. Rev. Mod. Phys., 75, 933. Kittel, C. (2004) Introduction to Solid State Physics, Wiley, New York. Zangwil, A. (1988) Physics at Surfaces, Cambridge University Press, Cambridge, UK. Zaremba, E. and Kohn, W. (1977) Theory of helium adsorption on simple and noble-metal surfaces. Phys. Rev. B, 15, 1769. Oura, K., Lifshitz, V.G., Saranin, A.A., Zotov, A.V., and Katayama, M. (2003) Surface Science: An Introduction, Springer-Verlag, Berlin, New York. Thiel, P.A. and Evans, J.W. (2000) Nucleation, growth, and relaxation of thin films: metal(100) homoepitaxials systems. J. Phys. Chem. B, 104, 1663. Kalff, M., Comsa, G., and Michely, T. (1998) How sensitive is epitaxial growth to adsorbates. Phys. Rev. Lett., 81, 1255. Michely, T., Hohage, M., Bott, M., and Comsa, G. (1993) Inversion of growth speed anisotropy in two dimensions. Phys. Rev. Lett., 70, 3943. Kalff, M., Smilauer, P., Comsa, G., Michely, T. (1999) No coarsening in Pt(111) homoepitaxy. Surf. Sci. 426, L447. Liu, H., Lin, Z., Zhigilei, L.V., and Reinke, P. (2008) Fractal structures in fullerene layers: simulation of the growth process. J. Phys. Chem. C, 112, 4687. Liu, H. and Reinke, P. (2006) C60 thin film growth on graphite: coexistence of spherical and fractal-dendritic islands. J. Chem. Phys., 124, 164707. Ehrlich, G. and Hudda, F.G. (1966) Atomic view of surface self-diffusion: tungsten on tungsten. J. Chem. Phys., 44, 1039. Schwoebel, R.L. and Shipsey, E.J. (1966) Step motion on crystal surfaces. J. Appl. Phys., 37, 3682. Crommie, M.F., Lutz, C.P., and Eigler, D.M. (1993) Confinement of electrons to quantum corrals on a metal surface. Science, 262, 218. Manoharan, H.C., Lutz, C.P., and Eigler, D.M. (2000) Quantum mirages formed by coherent projection of electronic structure. Nature, 403, 512. Bennewitz, R., Crain, J.N., Kirakosian, A., Lin, J.-L., McChesney, J.L., Petrovykh, D.Y., and Himpsel, F.J. (2002) Atomic scale memory at a silicon surface. Nanotechnology, 13, 499. Fischbein, M.D. and Drndic, M. (2007) Sub-10 nm device fabrication in a transmission electron microscope. Nano Lett., 7, 1329. Tsong, T.T. and Sweeney, J. (1979) Direct observation of the atomic structure of W{100} surfaces. Solid State Commun., 30, 767. Binnig, G., Rohrer, H., Gerber, C., and Weibel, E. (1982) Tunneling through a controllable vacuum gap. Appl. Phys. Lett., 40, 178. Binnig, G., Rohrer, H., Gerber, C., and Weibel, E. (1983) 7×7 reconstruction in Si(111) resolved in real space. Phys. Rev. Lett., 50, 120. Bardeen, J. (1961) Tunneling from a many-particle point of view. Phys. Rev. Lett., 6, 57. Tersoff, J. and Hamann, D.R. (1983) Theory and application for the scanning tunneling microscope. Phys. Rev. Lett., 50, 1998. Tersoff, J. and Hamann, D.R. (1985) Theory of the scanning tunneling microscope. Phys. Rev. B, 31, 805. Barth, J.V., Brune, H., Ertl, G., and Behm, R.J. (1990) Scanning tunneling microscopy observations on the reconstructed Au(111) surface: atomic structure, long-range superstructure, rotational domains, and surface defects. Phys. Rev. B, 42, 9307. Hamers, R.J., Tromp, R.M., and Demuth, J.E. (1986) Surface electronic structure of Si(111)-(7×7) resolved in real space. Phys. Rev. Lett., 56, 1972. Takayanagi, K., Tanishiro, Y., Takahashi, M., and Takahashi, S. (1985) Structural analysis of Si(111)-(7×7) by UHV-transmission electron diffraction and microscopy. J. Vac. Sci. Technol. A, 3, 1502. Tromp, R.M. (1989) Spectroscopy with the scanning tunneling microscope. J. Phys.: Condens. Matter, 1, 10211. Yin, W., Wolf, S., Ko, C., Ramanathan, S., and Reinke, P. (2010) Nanoscale probing of electronic band gap and topography of VO2 thin film surfaces by scanning tunneling microscopy. J. Appl. Phys., 109, 024311. Lang, N.D. (1986) Spectroscopy of single atoms in the scanning tunneling microscope. Phys. Rev. B, 34, 5947. Meyer, E., Hug, H.-J., and Bennewitz, R. (2004) Scanning Probe Microscopy – The Lab on a Tip, Springer-Verlag, Berlin, New York. Giessibl, F.J. (2003) Advances in atomic force microscopy. Rev. Mod. Phys., 75, 949. Bartels, L., Meyer, G., and Rieder, K.-H. (1997) Basic steps of lateral manipulation of single atoms and diatomic clusters with a scanning tunneling microscope tip. Phys. Rev. Lett., 79, 697. Lyding, J.W., Shen, T.-C., Hubacek, J.S., Tucker, J.R., and Abeln, G.C. (1994) Nanoscale patterning and oxidation of H-passivated Si(100)-(2×1) surfaces with an ultrathigh vacuum scanning tunneling microscope. Appl. Phys. Lett., 64, 2010. Shirai, Y., Osgood, A.J., Zhao, Y., Kelly, K.F., and Tour, J.N. (2005) Directional control in thermally driven single-molecule nanocars. Nano Lett., 5, 2330. Huefner, S. (1996) Photoelectron Spectroscopy: Principles and Applications, Springer-Verlag, Berlin, New York. Stoehr, J. (1992) NEXAFS Spectroscopy, Springer Verlag, Berlin, New York. Bardyszewski, W. and Hedin, L. (1985) A new approach to the theory of photoemission from solids. Phys. Scripta, 32, 439. Yeh, J.J. and Lindau, I. (1985) Atomic sub-shell photoionization cross sections and asymmetry parameters:1 ≤ z ≤ 103 At. Data Nucl. Data Tables 32, 1. Doniach, S. and Sunjic, M. (1970) Many-electron singularity in x-ray photoemission and x-ray line spectra from metals. J. Phys. C: Solid State Phys., 3, 285. Zhang, Y., Brar, V.W., Girit, C., Zettl, A., and Crommie, M.F. (2009) Origin of spatial charge inhomgeneity in graphene. Nat. Phys., 5, 722. Hembacher, S., Giessibl, F.J., Mannhart, J., and Quate, C.F. (2003) Revealing the hidden atom in graphite by low-temperature atomic force microscopy. Proc. Natl. Acad. Sci., 100, 12539. Boyen, H.-G., Ethirajan, A., Kaestle, G., Weigl, F., Ziemann, P., Schmid, G., Garnier, M.G., Buettner, M., and Oelhafen, P. (2005) Alloy formation of supported gold nanoparticles at their transition from clusters to solids: does size matter?. Phys. Rev. Lett., 94, 016804. Lu, W. and Lieber, C.M. (2007) Nanoelectronics from the bottom up. Nat. Mater., 6, 841. Samuelson, L., Thelander, C., Bjork, M.T., Borgstrom, M., Deppert, K., Dick, K.A., Hansen, A.E., Martensson, T., Panev, N., Persson, A.I., Seifert, W., Skold, N., Larsson, M.W., and Wallenberg, L.R. (2004) Semiconductor nanowires for 0D and 1D physics and applications. Phys. E, 25, 313. Wagner, R.S. and Ellis, W.C. (1964) Vapor–liquid–solid mechanism of single crystal growth. Appl. Phys. Lett., 4, 89. Gutsche, C., Regolin, I., Blekker, K., Lysov, A., Prost, W., and Tegude, F.J. (2009) Controllable p-type doping of GaAs nanowires during vapor–liquid–solid growth. J. Appl. Phys., 105, 024305. Kolasinski, K.W. (2006) Catalytic growth of nanowires: vapor–liquid–solid, vapor–solid–solid, solution–liquid–solid and solid–liquid–solid growth. Curr. Opin. Solid State Mater. Sci., 10, 182. Tian, B., Zheng, X., Kempa, T.J., Fang, Y., Yu, N., Yu, G., Huang, J., and Lieber, C.M. (2007) Coaxial silicon nanowires as solar cells and nanoelectric power sources. Nature, 449, 885. Yang, P., Yan, R., and Fardy, M. (2010) Semiconductor nanowire: what's next?. Nano Lett., 10, 1529. Ionescu, A.M. (2010) Nanowire transistors made easy. Nat. Nanotechnol., 5, 178. Kelzenberg, M.D., Boettcher, S.W., Petykiewicz, J.A., Turner-Evans, D.B., Putnam, M.C., Warren, E.L., Spurgeon, J.M., Briggs, R.M., Lewis, N.S., and Atwater, H.A. (2010) Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications. Nat. Mater., 9, 239. Law, M., Greene, L.E., Johnson, J.C., Saykally, R., and Yang, P. (2005) Nanowire dye-sensitized solar cells, Nat. Mater., 4, 455. McAlpine, M.C., Ahmad, H., Wang, D., and Heath, J.R. (2007) Highly ordered nanowire arrays on plastic substrates for ultrasensitive flexible chemical sensors. Nat. Mater., 6, 379. Minot, E.D., Kelkensberg, F., van Kouwen, M., van Dam, J.A., Kouwenhoven, L.P., Zwiller, V., Borgstroem, M.T., Wunnicke, O., Verheijen, M.A., and Bakkers, E.P.A.M. (2007) Single quantum dot nanowire LEDs. Nano Lett., 7, 367. Givargizov, E.I. (1973) Periodic instability in whisker growth. J. Cryst. Growth, 20, 217. Persson, A.I., Larsson, M.W., Stenstroem, S., Ohlsson, B.J., Samuelson, L., and Wallenberg, L.R. (2004) Solid-phase diffusion mechanism for GaAs nanowire growth. Nat. Mater., 3, 677. Gole, J.L., Stout, J.D., Rauch, W.L., and Wang, Z.L. (2000) Direct synthesis of silicon nanowires, silica nanospheres, and wire-like nanosphere agglomerates. Appl. Phys. Lett., 76, 2346. Wang, N., Tang, Y.H., Zhang, Y.F., Lee, C.S., Bello, I., and Lee, S.T. (1999) Si nanowires grown from silicon oxide. Chem. Phys. Lett., 299, 237. Wang, N., Tang, Y.H., Zhang, Y.F., Lee, C.S., and Lee, S.T. (1998) Nucleation and growth of Si nanowires from silicon oxide. Phys. Rev. B, 58, R 16024. Wu, Y. and Yang, P. (2001) Direct observation of vapor–liquid–solid nanowire growth. J. Am. Chem. Soc., 123, 3165. DeHoff, R.T. (1993) Thermodynamics in Materials Science, McGrawHill, New York. Buffat, P. and Borel, J.-P. (1976) Size effect on the melting temperature of gold particles. Phys. Rev. A, 13, 2287. Breaux, G.A., Neal, C.M., Cao, B., and Jarrold, M.F. (2005) Melting, premelting, and structural transitions in size-selected aluminum clusters with around 55 atoms. Phys. Rev. Lett., 94, 173401. Haberland, H., Hippler, T., Donges, J., Kostko, O., Schmidt, M., and von Issendorff, B. (2005) Melting of sodium clusters: where do the magic numbers come from?. Phys. Rev. Lett., 94, 035701. Hendy, S.C. (2007) A thermodynamic model for the melting of supported metal nanoparticles. Nanotechnology, 18, 175703. Dick, K.A., Deppert, K., Mårtensson, T., Mandl, B., Samuelson, L., and Seifert, W. (2005) Failure of the vapor–liquid–solid mechanism in Au-assisted MOVPE growth of InAs nanowires. Nano Lett., 5, 761. Wacaser, B.A., Reuter, M.C., Khayyat, M.M., Wen, C.-Y., Haight, R., Guha, S., and Ross, F.M. (2009) Growth system, structure, and doping of aluminum-seeded epitaxial silicon nanowires. Nano Lett., 9, 3296. Wacaser, B.A., Dick, K.A., Johansson, J., Borgstroem, M.T., Deppert, K., and Samuelson, L. (2009) Preferential interface nucleation: an expansion of the VLS growth mechanism for nanowires. Adv. Mater., 21, 153. Dick, K.A., Deppert, K., Larsson, M.W., Mårtensson, T., Seiffert, W., Wallenberg, L.R., and Samuelson, L. (2004) Synthesis of branched “nanotrees” by controlled seeding of multiple branching events. Nat. Mater., 3, 380. Ohlsson, B.J., Bjoerk, M.T., Magnusson, M.H., Deppert, K., Samuelson, L., and Wallenberg, L.R. (2001) Size-, shape, and position-controlled GaAs nano-whiskers. Appl. Phys. Lett., 79, 3335. Duffe, S., Groenhagen, N., Patryarcha, L., Sieben, B., Yin, C., von Issendorff, B., Moseler, M., and Hoevel, H. (2010) Penetration of thin C60 films by metal nanoparticles. Nat. Nanotechnol., 5, 335. Kelly, A., Groves, G.W., and Kidd, P. (2000) Crystallography and Crystal Defects, 2nd edn, John Wiley and Sons, Chichester, UK. Hannon, J.B., Kodambaka, S., Ross, F.M., and Tromp, R.M. (2006) The influence of the surface migration of gold on the growth of silicon nanowires. Nature, 440, 69. Murayama, M. and Nakayama, T. (1994) Chemical trend of band offset at wurtzite/zinc-blende heterocrystalline semiconductor interfaces. Phys. Rev. B, 49, 4710. Yeh, C.Y., Lu, Z.W., Froyen, S., and Zunger, A. (1992) Zinc-blende-wurtzite polytypism in semiconductors. Phys. Rev. B, 46, 10086. Caroff, P., Dick, K.A., Johansson, J., Messing, M.E., Deppert, K., and Samuelson, L. (2008) Controlled polytypic and twin-plane superlattices in III–V nanowires. Nat. Nanotechnol., 4, 50. Bolinsson, J., Ouattara, L., Hofer, W.A., Skoeld, N., Lundgren, E., Gustafsson, A., and Mikkelsen, A. (2009) Direct observation of atomic scale surface relaxation in ortho twin structures in GaAs by XSTM. J. Phys.: Condens. Matter., 21, 055404. Akiyama, T., Sano, K., Nakamura, K., and Ito, T. (2006) An empirical potential approach to wurtzite-zinc-blende polytypism in group III–V semiconductor nanowires. Jpn. J. Appl. Phys., 45, L275. Koguchi, M., Kakibayashi, H., Yazawa, M., Hiruma, K., and Katsuyama, T. (1992) Crystal structure change of GaAs and InAs whiskers from zinc-blende to wurtzite type. Jpn. J. Appl. Phys., 31, 2061. Dick, K.A., Caroff, P., Bolinsson, J., Messing, M.E., Johansson, J., Deppert, K., Wallenberg, L.R., and Samuelson, L. (2010) Control of III–V nanowire crystal structure by growth parameter tuning. Semicond. Sci. Technol., 25, 024009. Glas, F., Harmand, J.-C., and Patriarche, G. (2007) Why does wurtzite form in nanowires of III–V zinc blende semiconductors?. Phys. Rev. Lett., 99, 146101. Glas, F., Patriarche, G., and Harmand, J.C. (2010) Growth, structure and phase transitions of epitaxial nanowires of III–V semiconductors. J. Phys. Conf. Ser., 209, 012002. Algra, R.E., Verheijen, M.A., Borgstroem, M.T., Feiner, L.F., Immink, G., van Enckevort, W.J.P., Vlieg, E., and Bakkers, E.P.A.M. (2008) Twinning superlattices in indium phosphide nanowires. Nature, 456, 369. Hiruma, K., Yazawa, M., Haraguchi, K., Ogawa, K., Katsuyama, T., Koguchi, M., and Kakibayashi, H. (1993) GaAs free-standing quantum-size wires. J. Appl. Phys., 74, 3162. Krishnamachari, U., Borgstrom, M., Ohlsson, B.J., Panev, N., Samuelson, L., Seifert, W., Larsson, M.W., and Wallenberg, L.R. (2004) Defect-free InP nanowries grown in [001] direction on InP(001). Appl. Phys. Lett., 85, 2077. Mikkelsen, A., Skoeld, N., Ouattara, L., and Lundgren, E. (2006) Nanowire growth and dopants studied by cross-sectional scanning tunneling microscopy. Nanotechnology, 17, S362. Ross, F.M., Tersoff, J., and Reuter, M.C. (2005) Sawtooth faceting in silicon nanowires. Phys. Rev. Lett., 95, 146104. Kamins, T.I., Li, X., Williams, R.S., and Liu, X. (2004) Growth and structure of chemically vapor deposited Ge nanowires on Si substrates. Nano Lett., 4, 503. Bakkers, E.P.A.M., van Dam, J.A., De Franceschi, S., Kouwenhoven, L.P., Kaiser, M., Verheijen, M., Wondergem, H., and van der Sluis, P. (2004) Epitaxial growth of InP nanowires on germanium. Nat. Mater., 3 769. Mårtensson, T., Svensson, C.P.T., Wacaser, B.A., Larsson, M.W., Seifert, W., Deppert, K., Gustafsson, A., Wallenberg, L.R., and Samuelson, L. (2004) Epitaxial III–V nanowires on silicon. Nano Lett., 4, 1987. Kuykendall, T., Pauzauskie, P.J., Zhang, Y., Goldberger, J., Sirbuly, D., Denlinger, J., and Yang, P. (2004) Crystallographic alignment of high-density gallium nitride nanowire arrays. Nat. Mater., 3, 524. Bjork, M.T., Thelander, C., Hansen, A.E., Jensen, L.E., Larsson, M.W., Wallenberg, L.R., and Samuelson, L. (2004) Few-electron quantum dots in nanowires. Nano Lett., 4, 1621. Lauhon, L.J., Gudikson, M.S., Wang, D., and Lieber, C.M. (2002) Epitaxial core-shell and core-multishell nanowire heterostructures. Nature, 420, 57. Milliron, D.J., Hughes, S.M., Cui, Y., Manna, L., Li, J., Wang, L.W., and Alivisatos, A.P. (2004) Colloidal nanocrystal heterostructures with linear and branched topology. Nature, 430, 190. Chen, Y., Ohlberg, D.A.A., and Williams, R.S. (2002) Nanowires of four epitaxial hexagonal silicides grown on Si(001). J. Appl. Phys., 91, 3213. Frangis, N., Landuyt, J.V., Kaltsas, G., Travlos, A., and Nassiopolous, A.G. (1997) Growth of erbium-silicide films on (100) silicon as characterised by electron microscopy and diffraction. J. Cryst. Growth, 172, 175. Lee, D. and Kim, S. (2003) Formation of hexagonal Gd disilicide nanowires on Si(100). Appl. Phys. Lett., 82, 2619. Lim, D.K., Bae, S.-S., Choi, J., Lee, D., Sung, D.E., Kim, S., Kim, J.K., Yeom, H.W., and Lee, H. (2008) Unidirectional Pt silicide nanowires grown on vicinal Si(100). J. Chem. Phys., 128, 094701. Lin, J.-F., Bird, J.P., He, Z., Bennett, P.A., and Smith, D.J. (2004) Signatures of quantum transport in self-assembled epitaxial nickel silicide nanowires. Appl. Phys. Lett., 85, 281. Preinesberger, C., Vandré, S., Kalka, T., and Daehne-Prietsch, M. (1998) Formation of dysprosium silicide wires on Si(001). J. Phys. D: Appl. Phys., 31, L 43. Zhou, W., Wang, S., Ji, T., Zhu, Y., Cai, Q., and Hou, X. (2006) Growth of erbium silicide nanowires on Si(001) surface studied by scanning tunneling microscopy. Jpn. J. Appl. Phys., 45, 2059. Zhu, Y., Zhou, W., Wang, S., Ji, T., Hou, X., and Cai, Q. (2006) From nanowires to nanoislands: morphological evolution of erbium silicide nanostructures formed on the vicinal Si(001) surface. J. Appl. Phys., 100, 114312. Crain, J.N., McChesney, J.L., Zheng, F., Gallagher, M.C., Snijders, P.C., Bissen, M., Gundelach, C., Erwin, S.C., and Himpsel, F.J. (2004) Chains of gold atoms with tailored electronic states. Phys. Rev. B, 69, 125401. Shen, J., Skomski, R., Klaua, M., Jenniches, H., Manoharan, S.S., Kirschner, J. (1997) Magnetism in one dimension: Fe on Cu(111). Phys. Rev. B, 56 2340. Gambardella, P., Blanc, M., Brune, H., Kuhnke, K., and Kern, K. (2000) One-dimensional metal chains on Pt vicinal surfaces. Phys. Rev. B, 61, 2254. Miki, K., Bowler, D.R., Owen, J.H.G., Briggs, G.A.D., and Sakamoto, K. (1999) Atomically perfect bismuth lines on Si(001). Phys. Rev. B, 59, 14868. Omi, H. and Ogino, T. (1997) Self-assembled Ge nanowires grown on Si(113). Appl. Phys. Lett., 71, 2163. Owen, J.H.G., Miki, K., and Bowler, D.R. (2006) Self-assembled nanowires on semiconductor surfaces. J. Mater. Sci., 41, 4568. Wang, S.C., Yilmaz, M.B., Knox, K.R., Zaki, N., Dadap, J.I., Valla, T., Johnson, P.D., and Osgood, Jr., R.M. (2008) Electronic structure of a Co-decorated vicinal Cu(775) surface: high-resolution photoemission spectroscopy. Phys. Rev. B, 77, 115448. Zaki, N., Potapenko, D., Johnson, P.D., and Osgood, Jr., R.M. (2009) Atom-wide Co wires on Cu(775) at room temperature. Phys. Rev. B, 80, 155419. Brocks, G., Kelly, P.J., and Car, R. (1993) Adsorption of Al on Si(100): a surface polymerization reaction. Phys. Rev. Lett., 70, 2786. Evans, M.M.R. and Nogami, J. (1999) Indium and gallium on Si(001): a closer look at the parallel dimer structure. Phys. Rev. B, 59, 7644. Albao, M.A., Evans, J.W., and Chuang, F.-C. (2009) A kinetic monte carlo study on the role of defects and detachment in the formation and growth of In chains on Si(100). J. Phys.: Condens. Matter, 21, 405002. Saranin, A.A., Zotov, A.V., Kotlyar, V.G., Kuyanov, I.A., Kasyanova, T.V., Nishida, A., Kishida, M., Murata, Y., Okado, H., Katayama, M., and Oura, K. (2005) Growth of thallium overlayers on a Si(100) surface. Phys. Rev. B, 71, 035312. Carpinelli, J.M., Weitering, H.H., Plummer, E.W., and Stumpf, R. (1996) Direct observation of a surface charge density wave. Nature, 381, 398. Crain, J.N., Altmann, K.N., Bromberger, C., and Himpsel, F.J. (2002) Fermi surfaces of surface states on Si(111)-Ag,Au. Phys. Rev. B, 66, 205302. Friend, R.H. and Jerome, D. (1979) Periodic lattice distortions and charge density waves in one- and two-dimensional metals. J. Phys. C: Solid State Phys., 12, 1441. Harrison, B.C. and Boland, J.J. (2005) Real-time STM study of inter-nanowire reactions: GdSi2 nanowires on Si(100). Surf. Sci., 594, 93. Nogami, J., Liu, B.Z., Katkov, M.V., Ohbuchi, C., and Birge, N.O. (2001) Self-assembled rare earth silicide nanowires on Si(001). Phys. Rev. B, 63, 233305. Owen, J.H.G., Miki, K., Koh, H., Yeom, H.W., and Bowler, D.R. (2002) Stress relief as the driving force for self-assembled Bi nanolines. Phys. Rev. Lett., 88, 226104. Wang, J.-T., Chen, C., Wang, E., and Kawazoe, Y. (2010) Magic monoatomic linear chains for Mn nanowire self-assembly on Si(001). Phys. Rev. Lett., 105, 116102. Albao, M.A., Evans, M.M.R., Nogami, J., Zorn, D., Gordon, M.S., and Evans, J.W. (2005) Monotonically decreasing size distributions for one-dimensional Ga rows on Si(100). Phys. Rev. B, 72, 035426. Javorsky, J., Setvin, M., Ost'adal, I., Sobotik, P., and Kotrla, M. (2009) Heterogeneous nucleation and adatom detachment at one-dimensional growth of In on Si(100)(2×1). Phys. Rev. B, 79, 165424. Kocan, P., Jurczyszyn, L., Sobotik, P., and Ost'adal, I. (2008) Defects in the Si(100)-(2×1) surface: anchoring sites of the surface polymerization reaction of In atoms. Phys. Rev. B, 77, 113301. Hirjibehedin, C.F., Lutz, C.P., and Heinrich, A.J. (2006) Spin coupling in engineered atomic structures. Science, 312, 1021. Khajetoorians, A.A., Wiebe, J., Chilian, B., and Wiesendanger, R. (2011) Realizing all-spin-based logic operations atom by atom. Science, 332, 1062. Nilius, N., Wallis, T.M., and Ho, W. (2002) Development of one dimensional band structure in artificial gold chains Science, 297, 1853. Attard, G. and Barnes, C. (1998) Surfaces, Oxford Science Publications, Oxford, UK. Crain, J.N., Kirakosian, A., Altmann, K.N., Bromberger, C., Erwin, S.C., McChesney, J.L., Lin, J.-L., and Himpsel, F.J. (2003) Fractional band filling in an atomic chain structure. Phys. Rev. Lett., 90, 176805. Ma, D.D.D., Lee, C.S., Au, F.C.K., Tong, S.Y., and Lee, S.T. (2003) Small-diameter silicon nanowire surfaces. Science, 299, 1874. Delley, B. and Steigmeier, E.F. (1995) Size dependence of band gaps in silicon nanostructures. Appl. Phys. Lett., 67, 2370. Read, A.J., Needs, R.J., Nash, K.J., Canham, L.T., Calcott, P.D.J., and Qteish, A. (1992) First-principles calculations of the electronic properties of silicon quantum wires. Phys. Rev. Lett., 69, 1232. Niquet, Y.M., Lherbier, A., Quang, N.H., Fernandez-Serra, M.V., Blase, X., and Delerue, C. (2006) Electronic structure of semiconductor nanowires. Phys. Rev. B, 73, 165319. Astromskas, G., Storm, K., Karlstroem, O., Caroff, P., Borgstroem, M., and Wernersson, L.-E. (2010) Doping incorporation in InAs nanowires characterized by capacitance measurements. J. Appl. Phys., 108, 054306. Xie, P., Hu, Y., Fang, Y., Huang, J., and Lieber, C.M. (2009) Diameter-dependent dopant location in silicon and germanium nanowires. Proc. Natl. Acad. Sci., 106, 15254. Yang, C., Zhong, Z., and Lieber, C.M. (2005) Encoding electronic properties by synthesis of axial modulation-doped silicon nanowires. Science, 310, 1304. Bjoerk, M.T., Schmid, H., Knoch, J., Riel, H., and Riess, W. (2009) Donor deactivation in silicon nanostructures. Nat. Nanotechnol., 4, 103. Moench, W. (1995) Semiconductor Surfaces and Interfaces, 2nd edn, Springer-Verlag, Berlin, Heidelberg, New York. Calarco, R., Marso, M., Richter, T., Aykanat, A.I., Meijers, R., v.d. Hart, A., Stoica, T., and Lueth, H. (2005) Size-dependent photoconductivity in MBE-grown GaN nanowires. Nano Lett., 5, 981. Adachi, S. (1992) Physical Properties of III–V Semiconductor Compounds, Wiley-VCH, New York. Diarra, M., Niquet, Y.-M., Delerue, C., and Allan, G. (2007) Ionization energy of donor and acceptor impurities in semiconductor nanowires: importance of dielectric confinement. Phys. Rev. B, 75, 045301. Massalski, T.B. (1990) Binary Alloy Phase Diagrams, 2nd edn, ASM International, Materials Park, Ohio, USA. Baletto, F. and Ferrando, R. (2005) Structural properties of nanoclusters: energetic, thermodynamic, and kinetic effects. Rev. Mod. Phys., 77, 371. Brack, M. (1993) The physics of simple metal clusters: self-consistent jellium model and semiclassical approaches. Rev. Mod. Phys., 65, 677. Clemenger, K. (1985) Ellipsoidal shell structure in free-electron metal clusters. Phys. Rev. B, 32, 1359. Dong, Y. and Springborg, M. (2007) Unbiased determination of structural and electronic properties of gold clusters with up to 58 atoms. J. Phys. Chem. C, 111, 12528. Ferrando, R., Fortunelli, A., and Rossi, G. (2005) Quantum effects on the structure of pure and binary metallic nanoclusters. Phys. Rev. B, 72, 085449. Gruene, P., Rayner, D.M., Redlich, B., van der Meer, A.F.G., Lyon, J.T., Meijer, G., and Fielicke, A. (2008) Structures of neutral Au7, Au19, and Au20 clusters in the gas phase. Science, 321, 674. Han, Y. and Liu, D.-J. (2010) Shell structure and phase relations in electronic properties of metal nanowires from an electron-gas model. Phys. Rev. B, 82, 125420. de Heer, W.A. (1993) The physics of simple metal clusters: experimental aspects and simple models. Rev. Mod. Phys., 65, 611. Aiken III, J.D. and Finke, R.G. (1999) A review of modern transition-metal nanoclusters: their synthesis, characterization, and applications in catalysis. J. Mol. Catal. A: Chem., 145, 1. Itoh, M., Kumar, V., Adschiri, T., and Kawazoe, Y. (2009) Comprehensive study of sodium, copper, and silver clusters over a wide range of sizes 2≤N≤75. J. Chem. Phys., 131, 174510. Knight, W.D., Clemenger, K., de Heer, W.A., Saunders, W.A., Chou, M.Y., and Cohen, M.L. (1984) Electronic shell structure and abundances of sodium clusters. Phys. Rev. Lett., 52, 2141. Martin, T.P. (1996) Shells of atoms. Phys. Rep., 273, 199. Martin, T.P. (2000) From atoms to solids. Solid State Ionics, 131, 3. Rossi, G., Rapallo, A., Mottet, C., Fortunelli, A., Baletto, F., and Ferrando, R. (2004) Magic polyicosahedral core-shell clusters. Phys. Rev. Lett., 93, 105503. Jain, P.K., Huang, X., El-Sayed, I.H., and El-Sayed, M.A. (2007) Review of some interesting surface plasmon resonance-enhanced properties of noble metal nanoparticles and their applications to biosystems. Plasmonics, 2, 107. Ozbay, E. (2006) Plasmonics" @default.
- W4211000833 created "2022-02-13" @default.
- W4211000833 date "2012-03-14" @default.
- W4211000833 modified "2023-10-13" @default.
- W4211000833 title "References" @default.
- W4211000833 cites W11476871 @default.
- W4211000833 cites W1484969039 @default.
- W4211000833 cites W1494168269 @default.
- W4211000833 cites W1513209253 @default.
- W4211000833 cites W1525998143 @default.
- W4211000833 cites W1532669891 @default.
- W4211000833 cites W1533581932 @default.
- W4211000833 cites W1543866141 @default.
- W4211000833 cites W1550484900 @default.
- W4211000833 cites W1550801008 @default.
- W4211000833 cites W1589061476 @default.
- W4211000833 cites W1606179079 @default.
- W4211000833 cites W1613238598 @default.
- W4211000833 cites W1645447662 @default.
- W4211000833 cites W1645545321 @default.
- W4211000833 cites W1818016899 @default.
- W4211000833 cites W1963971181 @default.
- W4211000833 cites W1964152068 @default.
- W4211000833 cites W1966216662 @default.
- W4211000833 cites W1966681574 @default.
- W4211000833 cites W1966783515 @default.
- W4211000833 cites W1966797057 @default.
- W4211000833 cites W1967402264 @default.
- W4211000833 cites W1967746793 @default.
- W4211000833 cites W1967760866 @default.
- W4211000833 cites W1968087898 @default.
- W4211000833 cites W1969155094 @default.
- W4211000833 cites W1969714962 @default.
- W4211000833 cites W1969721436 @default.
- W4211000833 cites W1971314390 @default.
- W4211000833 cites W1971338008 @default.
- W4211000833 cites W1973294693 @default.
- W4211000833 cites W1973566553 @default.
- W4211000833 cites W1975643895 @default.
- W4211000833 cites W1976344157 @default.
- W4211000833 cites W1976784016 @default.
- W4211000833 cites W1977082283 @default.
- W4211000833 cites W1977451748 @default.
- W4211000833 cites W1977838850 @default.
- W4211000833 cites W1978709019 @default.
- W4211000833 cites W1980017334 @default.
- W4211000833 cites W1980495221 @default.
- W4211000833 cites W1980516378 @default.
- W4211000833 cites W1980807995 @default.
- W4211000833 cites W1980945223 @default.
- W4211000833 cites W1981411003 @default.
- W4211000833 cites W1981792803 @default.
- W4211000833 cites W1982328725 @default.
- W4211000833 cites W1982396868 @default.
- W4211000833 cites W1982928584 @default.
- W4211000833 cites W1983005756 @default.
- W4211000833 cites W1983056440 @default.
- W4211000833 cites W1983384817 @default.
- W4211000833 cites W1983653705 @default.
- W4211000833 cites W1983684958 @default.
- W4211000833 cites W1984114508 @default.
- W4211000833 cites W1985854442 @default.
- W4211000833 cites W1986559542 @default.
- W4211000833 cites W1986719312 @default.
- W4211000833 cites W1986863852 @default.
- W4211000833 cites W1987213430 @default.
- W4211000833 cites W1987919098 @default.
- W4211000833 cites W1987924718 @default.
- W4211000833 cites W1987991108 @default.
- W4211000833 cites W1988604544 @default.
- W4211000833 cites W1989126844 @default.
- W4211000833 cites W1989506279 @default.
- W4211000833 cites W1989564598 @default.
- W4211000833 cites W1990057498 @default.
- W4211000833 cites W1990525821 @default.
- W4211000833 cites W1990585004 @default.
- W4211000833 cites W1990686086 @default.
- W4211000833 cites W1990752779 @default.
- W4211000833 cites W1991117744 @default.
- W4211000833 cites W1991859775 @default.
- W4211000833 cites W1992093134 @default.
- W4211000833 cites W1992102448 @default.
- W4211000833 cites W1992522325 @default.
- W4211000833 cites W1994123418 @default.
- W4211000833 cites W1994269523 @default.
- W4211000833 cites W1994576708 @default.
- W4211000833 cites W1994908005 @default.
- W4211000833 cites W1994936577 @default.
- W4211000833 cites W1996137548 @default.
- W4211000833 cites W1996259855 @default.
- W4211000833 cites W1996270964 @default.
- W4211000833 cites W1996320936 @default.
- W4211000833 cites W1997070558 @default.
- W4211000833 cites W1997307919 @default.
- W4211000833 cites W1997362608 @default.
- W4211000833 cites W1997473009 @default.
- W4211000833 cites W1997613934 @default.
- W4211000833 cites W1998050200 @default.