Matches in SemOpenAlex for { <https://semopenalex.org/work/W4211005805> ?p ?o ?g. }
- W4211005805 abstract "British Journal of PharmacologyVolume 158, Issue s1 p. S5-S101 Free Access 7TM RECEPTORS First published: 13 November 2009 https://doi.org/10.1111/j.1476-5381.2009.00501.xCitations: 1AboutSectionsPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onFacebookTwitterLinkedInRedditWechat 7TM RECEPTORS Overview: The completion of the Human Genome Project allowed the identification of a large family of proteins with a common motif of seven groups of 20–24 hydrophobic amino acids arranged as α helices. Approximately 800 of these seven transmembrane (7TM) receptors have been identified of which over 300 are non-olfactory receptors (see Fredriksson et al., 2003;Lagerstrom and Schioth, 2008). Subdivision on the basis of sequence homology allows the definition of rhodopsin, secretin, adhesion, glutamate and Frizzled receptor families. NC-IUPHAR recognizes Classes A, B, and C, which equate to the rhodopsin, secretin and glutamate receptor families. The nomenclature of 7TM receptors is commonly used interchangeably with G protein-coupled receptors, although the former nomenclature allows for signalling of 7TM receptors through pathways not involving G proteins. For example, adiponectin and membrane progestin receptors appear to signal independently of G proteins and appear to reside in membranes in an inverted fashion compared with conventional 7TM receptors. Additionally, the NPR3 natriuretic peptide receptor has a single transmembrane domain structure, but appears to couple to G proteins to generate cellular responses. The 300+ non-olfactory 7TM receptors are the targets for the majority of drugs in clinical usage (Overington et al., 2006), although only a minority of these receptors are exploited therapeutically. Further Reading Foord SM, Bonner TI, Neubig RR, Rosser EM, Pin JP, Davenport AP et al. (2005). International Union of Pharmacology. XLVI. G protein-coupled receptor list. Pharmacol Rev 57: 279– 288. Fredriksson R, Lagerstrom MC, Lundin LG, Schioth HB (2003). The G-protein-coupled receptors in the human genome form five main families. Phylogenetic analysis, paralogon groups, and fingerprints. Mol Pharmacol 63: 1256– 1272. Lagerstrom MC, Schioth HB (2008). Structural diversity of G protein-coupled receptors and significance for drug discovery. Nat Rev Drug Discov 7: 339– 357. Overington JP, Al-Lazikani B, Hopkins AL (2006). How many drug targets are there? Nat Rev Drug Discov 5: 993– 996. http://www.iuphar-db.org/ Orphan 7TM receptors Preliminary pairings While the remainder of this section focuses on those 7TM receptors for which there is substantial pharmacological information, or interest, listed below are a number of putative 7TM receptors identified by IUPHAR (Foord et al., 2005), for which only preliminary evidence for an endogenous ligand has been published, or for which there exists a potential link to a disease, or disorder. Gene Symbol Ensembl ID Other names Putative endogenous ligand Comment GPR1 ENSG00000183671 – Appears to act as a co-receptor for HIV (Shimizu et al., 1999) GPR3 ENSG00000181773 ACCA Fails to respond to a variety of lipid-derived agents (Yin et al., 2009) Has been reported to activate adenylyl cyclase constitutively through Gs (Eggerickx et al., 1995). Gene disruption results in premature ovarian aging (Ledent et al., 2005) and reduced β-amyloid deposition (Thathiah et al., 2009) in mice GPR4 ENSG00000177464 Protons (Ludwig et al., 2003; Tobo et al., 2007) An initial report suggesting activation by lysophosphatidylcholine, sphingosylphosphorylcholine (Zhu et al., 2001) has been retracted (Zhu et al., 2005). Gene disruption is associated with increased perinatal mortality and impaired vascular proliferation (Yang et al., 2007) GPR6 ENSG00000146360 Fails to respond to a variety of lipid-derived agents (Yin et al., 2009) Has been reported to activate adenylyl cyclase constitutively through Gs and to be located intracellularly (Padmanabhan et al., 2009) GPR12 ENSG00000132975 GPCR21 Fails to respond to a variety of lipid-derived agents (Yin et al., 2009) Gene disruption results in dyslipidemia and obesity (Bjursell et al., 2006) GPR15 ENSG00000154165 BOB – Appears to act as a co-receptor for HIV (Edinger et al., 1997) GPR17 ENSG00000144230 R12 Dual leukotriene and UDP receptor (Ciana et al., 2006) Has been reported to antagonize CysLT1 receptor signalling in vivo and in vitro (Maekawa et al., 2009) GPR18 ENSG00000125245 N-Arachidonoylglycine (Kohno et al., 2006), but fails to respond to a variety of lipid-derived agents (Yin et al., 2009) – GPR20 ENSG00000204882 – Has been reported to inhibit adenylyl cyclase constitutively through Gi/o (Hase et al., 2008) GPR22 ENSG00000172209 – Has been reported to inhibit adenylyl cyclase constitutively through Gi/o; gene disruption results in increased severity of functional decompensation following aortic banding (Adams et al., 2008) GPR26 ENSG00000154478 – Has been reported to activate adenylyl cyclase constitutively through Gs (Jones et al., 2007) GPR34 ENSG00000171659 Lysophosphatidylserine (Sugo et al., 2006), but fails to respond to a variety of lipid-derived agents (Yin et al., 2009) – GPR35 ENSG00000178623 Kynurenic acid (Wang et al., 2006) Has also been reported to respond to the phosphodiesterase inhibitor zaprinast (Taniguchi et al., 2006) and the chloride channel blocker 5-nitro-2-(3-phenylpropylamino) benzoic acid (Taniguchi et al., 2008) GPR37 ENSG00000170775 PAELR, EDNRLB Head activator peptide (Rezgaoui et al., 2006) Reported to associate and regulate the dopamine transporter (Marazziti et al., 2007) and to be a substrate for parkin (Marazziti et al., 2009) GPR39 ENSG00000183840 Obestatin (Zhang et al., 2005), or Zn2+ (Holst et al., 2007) Has been reported to be down-regulated in adipose tissue in obesity-related diabetes (Catalan et al., 2007) GPR48 ENSG00000205213 Leucine-rich repeat-containing G protein-coupled receptor 4, LGR4 – Gene disruption leads to multiple developmental disorders (Jin et al., 2008; Song et al., 2008; Weng et al., 2008; Luo et al., 2009) GPR50 ENSG00000102195 H9 – A potential orthologue of an avian melatonin receptor (Dufourny et al., 2008) GPR55 ENSG00000135898 Lysophosphatidylinositol (see Ross, 2009) GPR56 ENSG00000205336 TM7LN4, TM7XN1 – Binds tissue transglutaminase 2 (Xu et al., 2006) GPR63 ENSG00000112218 PSP24B Fails to respond to a variety of lipid-derived agents (Yin et al., 2009) GPR65 ENSG00000140030 TDAG8 Protons (Wang et al., 2004) Reported to activate adenylyl cyclase; gene disruption leads to reduced eosinophlia in models of allergic airway disease (Kottyan et al., 2009) GPR68 ENSG00000119714 OGR1 Protons (Ludwig et al., 2003) – GPR77 ENSG00000134830 C5L2 – Binds C5a complement factor, but appears to lack G protein signalling and has been termed a decoy receptor (Scola et al., 2009) GPR84 ENSG00000139572 EX33 Medium chain fatty acids (Wang et al., 2006) GPR87 ENSG00000138271 GPR95 Lysophosphatidic acid (Tabata et al., 2007) GPR98 ENSG00000164199 VLGR1 – Loss-of-function mutations are associated with Usher syndrome, a sensory deficit disorder (Jacobson et al., 2008) GPR120 ENSG00000186188 Free fatty acids (Katsuma et al., 2005; Hirasawa et al., 2005) – GPR132 ENSG00000183484 G2A Protons (Murakami et al., 2004) – GPR143 ENSG00000101850 OA1 L-DOPA (Lopez et al., 2008) Loss-of-function mutations underlie ocular albinism type 1 (Bassi et al., 1995) GPR161 ENSG00000143147 RE2 – Gene disruption is associated with a failure of asymmetric embryonic development in zebrafish (Leung et al., 2008) MRGPRD ENSG00000172938 TGR7 β-Alanine (Shinohara et al., 2004) Potentially exists as a heteromer with MRGPRE (GPR167, ENSG00000184350, Milasta et al., 2006) MRGPRX1 ENSG00000170255 SNSR4 BAM8-22 (Chen and Ikeda, 2004) MRGPRX2 ENSG00000183695 PAMP (Kamohara et al., 2005), cortistatin (Robas et al., 2003) OXGR1 ENSG00000165621 GPR80, GPR99, P2Y15 α-Ketoglutarate (He et al., 2004) SUCNR1 ENSG00000198829 GPR91 Succinate (He et al., 2004) BAI1 ENSG00000181790 Brain-specific angiogenesis inhibitor 1 Phosphatidylserine (Park et al., 2007) Further Reading Foord SM, Bonner TI, Neubig RR, Rosser EM, Pin JP, Davenport AP et al. (2005). International Union of Pharmacology. XLVI. G protein-coupled receptor list. Pharmacol Rev57: 279–288. Fredriksson R, Lagerstrom MC, Lundin LG, Schioth HB (2003). The G-protein-coupled receptors in the human genome form five main families. Phylogenetic analysis, paralogon groups, and fingerprints. Mol Pharmacol63: 1256–1272. Lagerstrom MC, Schioth HB (2008). Structural diversity of G protein-coupled receptors and significance for drug discovery. Nat Rev Drug Discovery7: 339–357. Overington JP, Al-Lazikani B, Hopkins AL (2006). How many drug targets are there? Nat Rev Drug Discovery5: 993–996. Ross RA (2009). The enigmatic pharmacology of GPR55. Trends Pharmacol Sci30: 156–163. References Adams JW et al. (2008). Am J Physiol -Heart Circ Physiol 295: H509– H521. Bassi MT et al. (1995). Nat Genet 10: 13– 19. Bjursell M et al. (2006). Biochem Biophys Res Commun 348: 359– 366. Catalan V et al. (2007). Clin Endocrinol (Oxf) 66: 598– 601. Chen H, Ikeda SR (2004). J Neurosci 24: 5044– 5053. Ciana P et al. (2006). EMBO J 25: 4615– 4627. Dufourny L et al. (2008). BMC Evol Biol 8: 105. Edinger AL et al. (1997). Proc Natl Acad Sci USA 94: 14742– 14747. Eggerickx D et al. (1995). Biochem J 309: 837– 843. Hase M et al. (2008). J Biol Chem 283: 12747– 12755. He W et al. (2004). Nature 429: 188– 193. Hirasawa A et al. (2005). Nat Med 11: 90– 94. Holst B et al. (2007). Endocrinology 148: 13– 20. Jacobson SG et al. (2008). Hum Mol Genet 17: 2405– 2415. Jin C et al. (2008). Invest Ophthalmol Vis Sci 49: 4245– 4253. Jones PG et al. (2007). Biochim Biophys Acta-Gen Subj 1770: 890– 901. Kamohara M et al. (2005). Biochem Biophys Res Commun 330: 1146– 1152. Katsuma S et al. (2005). J Biol Chem 280: 19507– 19515. Kohno M et al. (2006). Biochem Biophys Res Commun 347: 827– 832. Kottyan LC et al. (2009). Blood 114: 2774– 2784. Ledent C et al. (2005). Proc Natl Acad Sci USA 102: 8922– 8926. Leung T et al. (2008). Dev Biol 323: 31– 40. Lopez VM et al. (2008). PLoS Biol 6: e236. Ludwig MG et al. (2003). Nature 425: 93– 98. Luo J et al. (2009). Development 136: 2747– 2756. Maekawa A et al. (2009). Proc Natl Acad Sci USA 106: 11685– 11690. Marazziti D et al. (2007). Proc Natl Acad Sci USA 104: 9846– 9851. Marazziti D et al. (2009). FASEB J 23: 1978– 1987. Milasta S et al. (2006). Mol Pharmacol 69: 479– 491. Murakami N et al. (2004). J Biol Chem 279: 42484– 42491. Padmanabhan S et al. (2009). FEBS Lett 583: 107– 112. Park D et al. (2007). Nature 450: 430– 434. Rezgaoui M et al. (2006). J Cell Sci 119: 542– 549. Robas N et al. (2003). J Biol Chem 278: 44400– 44404. Scola AM et al. (2009). Mol Immunol 46: 1149– 1162. Shimizu N et al. (1999). J Virol 73: 5231– 5239. Shinohara T et al. (2004). J Biol Chem 279: 23559– 23564. Song H et al. (2008). J Biol Chem 283: 36687– 36697. Sugo T et al. (2006). Biochem Biophys Res Commun 341: 1078– 1087. Tabata K et al. (2007). Biochem Biophys Res Commun 363: 861– 866. Taniguchi Y et al. (2006). FEBS Lett 580: 5003– 5008. Taniguchi Y et al. (2008). Pharmacology 82: 245– 249. Thathiah A et al. (2009). Science 323: 946– 951. Tobo M et al. (2007). Cell Signal 19: 1745– 1753. Wang J et al. (2006). J Biol Chem 281: 22021– 22028. Wang JQ et al. (2004). J Biol Chem 279: 45626– 45633. Weng J et al. (2008). Proc Natl Acad Sci USA 105: 6081– 6086. Xu L et al. (2006). Proc Natl Acad Sci USA 103: 9023– 9028. Yang LV et al. (2007). Mol Cell Biol 27: 1334– 1347. Yin H et al. (2009). J Biol Chem 284: 12328– 12338. Zhang JV et al. (2005). Science 310: 996– 999. Zhu K et al. (2001). J Biol Chem 276: 41325– 41335. Zhu K et al. (2005). J Biol Chem 280: 43280. Additional ‘orphan’ 7-transmembrane receptors In the second set of tables below, putative 7-transmembrane receptors with as-yet unidentified endogenous ligands are listed. Gene symbol Ensembl ID Other names Gene symbol Ensembl ID Other names GPR19 ENSG00000183150 GPR149 ENSG00000174948 PGR10, IEDA GPR21 ENSG00000188394 GPR150 ENSG00000178015 PGR11 GPR25 ENSG00000170128 GPR151 ENSG00000173250 PGR7, GALR4, GPCR-2037 GPR27 ENSG00000170837 SREB1, super-conserved receptor expressed in brain 1 GPR152 ENSG00000175514 PGR5 GPR31 ENSG00000120436 GPR153 ENSG00000158292 PGR1 GPR32 ENSG00000142511 GPR155 ENSG00000163328 DEPDC3, DEP.7, FLJ31819, PGR22 GPR33 ENSMUSG00000035148 Pseudogene in man GPR156 ENSG00000175697 PGR28, GABABL GPR45 ENSG00000135973 PSP24 GPR157 ENSG00000180758 FLJ12132 GPR49 ENSG00000139292 LGR5, GPR67, FEX, HG38, MGC117008 GPR158 ENSG00000151025 KIAA1136 GPR52 ENSG00000203737 GPR160 ENSG00000173890 GPCR150, GPCR1 GPR61 ENSG00000156097 BALGR GPR162 ENSG00000110811 A-2, GRCA GPR62 ENSG00000180929 GPR164 ENSG00000180785 Olfactory receptor 51E1, prostate overexpressed G protein-coupled receptor GPR64 ENSG00000173698 HE6 GPR165 ENSMUSG00000031210 GPR70 ENSG00000173662 TAS1R1 GPR169 ENSG00000182170 MRGPRG GPR71 ENSG00000179002 TAS1R2 GPR171 ENSG00000174946 H963 GPR72 ENSG00000123901 GPR83 GPR172A ENSG00000185803 PAR1, Porcine endogenous retrovirus A receptor 1 GPR75 ENSG00000119737 WI31133 GPR173 ENSG00000184194 Super conserved receptor expressed in brain 3 GPR78 ENSG00000155269 GPR174 ENSG00000147138 FKSG79 GPR82 ENSG00000171657 GPR175 ENSG00000163870 TPRA40 GPR85 ENSG00000164604 SREB2 GPR176 ENSG00000166073 Gm1012, HB954 GPR88 ENSG00000181656 STRG GPR177 ENSG00000116729 Protein wntless homologue, putative NFκB-activating protein 373 GPR90 ENSMUSG00000059408 MRGPRH GPR178 ENSG00000146433 KIAA1423, TMEM181 GPR97 ENSG00000182885 Pb99, PGR26 GPR179 ENSG00000188888 GPR158L1 GPR101 ENSG00000165370 GPR180 ENSG00000152749 Intimal thickness-related receptor GPR107 ENSG00000148358 KIAA1624, RP11-88G17, FLJ20998, LUSTR1 GPR183 ENSG00000169508 EBI2, Epstein-Barr virus-induced gene 2, lymphocyte-specific G protein-coupled receptor GPR110 ENSG00000153292 hGPCR36, PGR19 MAS1 ENSG00000130368 GPR111 ENSG00000164393 hGPCR35, PGR20 MAS1L ENSG00000204687 GPR112 ENSG00000156920 RP1-299I16, PGR17 MGRPRX3 ENSG00000179826 Sensory neuron-specific G protein-coupled receptor 1/2 GPR113 ENSG00000173567 hGPCR37, PGR23 MGRPRX4 ENSG00000179817 Sensory neuron-specific G protein-coupled receptor 5/6 GPR114 ENSG00000159618 PGR27 P2RY10 ENSG00000078589 GPR115 ENSG00000153294 FLJ38076, PGR18 P2YR8 ENSG00000182162 GPR116 ENSG00000069122 DKFZp564O1923, KIAA0758 BAI2 ENSG00000121753 Brain-specific angiogenesis inhibitor 2 GPR123 ENSG00000197177 KIAA1828 BAI3 ENSG00000135298 Brain-specific angiogenesis inhibitor 3 GPR124 ENSG00000020181 Tumour endothelial marker 5 CD97 ENSG00000123146 Leukocyte antigen CD97 GPR125 ENSG00000152990 PGR21 CELR1 ENSG00000075275 Cadherin EGF LAG seven-pass G-type receptor 1, flamingo homologue 2, hFmi2 GPR126 ENSG00000112414 FLJ14937 CELR2 ENSG00000143126 Cadherin EGF LAG seven-pass G-type receptor 2, epidermal growth factor-like 2, multiple epidermal growth factor-like domains 3, flamingo 1 GPR127 ENSG00000186629 PGR16, EMR4 CELR3 ENSG00000008300 Cadherin EGF LAG seven-pass G-type receptor 3, flamingo 1, hFmi1, multiple epidermal growth factor-like domains 2, epidermal growth factor-like 1 GPR128 ENSG00000144820 FLJ14454 ELTD1 ENSG00000162618 EGF, latrophilin and seven transmembrane domain-containing protein 1, EGF-TM7-latrophilin-related protein, ETL protein GPR132 ENSG00000183484 G2A EMR1 ENSG00000174837 EGF-like module-containing mucin-like hormone receptor-like 1, cell surface glycoprotein EMR1, EMR1 hormone receptor GPR133 ENSG00000111452 PGR25 EMR2 ENSG00000127507 EGF-like module-containing mucin-like hormone receptor-like 2, EGF-like module EMR2, CD312 antigen GPR136 ENSG00000124818 OPN5, neuropsin, PGR14 EMR3 ENSG00000131355 EGF-like module-containing mucin-like hormone receptor-like 3, EGF-like module-containing mucin-like receptor EMR3 GPR137 ENSG00000173264 GPR137A, TM7SF1L1 LPHN1 ENSG00000072071 Latrophilin-1, calcium-independent α-latrotoxin receptor 1, lectomedin-2 GPR139 ENSG00000180269 PGR3 LPHN2 ENSG00000117114 Latrophilin-2, calcium-independent α-latrotoxin receptor 2, latrophilin homologue 1, lectomedin-1 GPR140 ENSG00000172935 MRGPRF, GPR168, RTA LPHN3 ENSG00000150471 Latrophilin-3, calcium-independent α-latrotoxin receptor 3, lectomedin-3 GPR141 ENSG00000187037 PGR13 GPRC5A ENSG00000013588 Retinoic acid-induced protein 3, G protein-coupled receptor family C group 5 member A, retinoic acid-induced gene 1 protein, RAIG-1, orphan G protein-coupling receptor PEIG-1 GPR142 ENSG00000196169 PGR2, KIF19 GPRC5B ENSG00000167191 G protein-coupled receptor family C group 5 member B, retinoic acid-induced gene 2 protein, RAIG-2, A-69G12.1 GPR144 ENSG00000180264 PGR24 GPRC5C ENSG00000170412 G protein-coupled receptor family C group 5 member C, retinoic acid-induced gene 3 protein, RAIG-3) GPR146 ENSG00000164849 PGR8 GPRC5D ENSG00000111291 G protein-coupled receptor family C group 5 member D GPR148 ENSG00000173302 PGR6, brain and testis restricted GPCR 5-HT (5-Hydroxytryptamine) 5-HT (5-Hydroxytryptamine) receptors [nomenclature as agreed by NC-IUPHAR Subcommittee on 5-HT receptors (Hoyer et al., 1994) and subsequently revised (Hartig et al., 1996)] are, with the exception of the ionotropic 5-HT3 class, 7TM receptors where the endogenous agonist is 5-HT. The diversity of metabotropic 5-HT receptors is increased by alternative splicing that produces isoforms of the 5-HT2A (non-functional), 5-HT2C (non-functional), 5-HT4, 5-HT6 (non-functional) and 5-HT7 receptors. Unique to the 7TM receptors, RNA editing produces 5-HT2C receptor isoforms that differ in function, such as efficiency and specificity of coupling to Gq/11 and also pharmacology (reviewed by Bockaert et al., 2006; Werry et al., 2008). Nomenclature 5-HT1A 5-HT1B 5-HT1D 5-ht1E Other names – 5-HT1Dβ 5-HT1Dα – Ensembl ID ENSG00000178394 ENSG00000135321 ENSG00000179546 ENSG00000168830 Principal transduction Gi/o Gi/o Gi/o Gi/o Selective agonists (pKi) 8-OH-DPAT (8.4–9.4), U92016A (9.7) L694247 (9.2), CP94253 (8.7) PNU109291 (9.0 – gorilla, Ennis et al., 1998), sumatriptan (8.0–8.7), eletriptan (8.9), L694247 (9.0, Wurch et al., 1998) – Selective antagonists (pKi) (±)WAY100635 (7.9–9.2), (S)-UH301 (7.9–8.6), NAD299 (robalzotan, 9.2) SB236057 (8.2, inverse agonist, Middlemiss et al., 1999), SB224289 (inverse agonist, 8.2–8.6), GR55562 (pKB 7.4, Hoyer et al., 2002) SB714786 (9.1) BRL15572 (7.9) – Probes (KD) [3H]WAY100635 (0.3 nM, Khawaja et al., 1997), [3H]NAD299 (0.16 nM), [3H]8-OH-DPAT (0.4 nM), [11C]WAY100635 (PET ligand), p-[18F]MPPF (PET ligand) [3H]Alniditan (2.0–2.4 nM), [3H]eletriptan (3 nM), [3H]sumatriptan (11 nM) [125I]GTI, [3H]GR125743 (2.6 nM, Xie et al., 1999), [N-methyl-3H3]AZ10419369 (PET ligand) [3H]Alniditan (1.2–1.4 nM), [3H]eletriptan (0.9 nM), [3H]sumatriptan (7 nM), [125I]GTI, [3H]GR125743 (2.8 nM, Xie et al., 1999) [3H]5-HT (6 nM) Nomenclature 5-HT1F 5-HT2A 5-HT2B 5-HT2C Other names 5-HT1Eβ, 5-HT6 D, 5-HT2 5-HT2F 5-HT1C Ensembl ID ENSG00000179097 ENSG00000102468 ENSG00000135914 ENSG00000147246 Principal transduction Gi/o Gq/11 Gq/11 Gq/11 Selective agonists (pKi) LY344864 (8.2, Phebus et al et al., 1997) LY334370 (8.7) DOI (7.4–9.2) DOI (7.6–7.7), Ro600175 (8.3), BW723C86 (7.3–8.6) DOI (7.2–8.6), Ro600175 (7.7–8.2), WAY163909 (8.0, Dunlop et al., 2005), Locaserine (7.8, Thomsen et al., 2008) Selective antagonists (pKi) – ketanserin (8.1–9.7), MDL100907 (9.4) RS127445 (9.0), EGIS-7625 (9.0) SB242084 (8.2–9.0), RS102221 (8.3–8.4), FR260010 (8.9, Harada et al., 2006) Probes (KD) [3H]LY334370 (0.5 nM), [125I]LSD [3H]ketanserin (0.2–1.3 nM), [3H]RP62203 (fananserin, 0.13 nM – rat, Malgouris et al., 1993), [11C]M100907 (PET ligand), [18F]altanserin (PET ligand) [3H]5-HT (8 nM – rat) [3H]mesulergine (0.5–2.2 nM), [3H]LSD Nomenclature 5-HT4 5-ht5A 5-ht5B 5-HT6 Other names – 5-HT5α – – Ensembl ID ENSG00000164270 ENSG00000157219 ENSMUSG00000050534 ENSG00000158748 Principal transduction Gs Gi/Go? None identified Gs Selective agonists (pKi) BIMU8 (7.3), ML10302 (7.9–9.0), RS67506 (8.8 – guinea-pig, Eglen et al., 1995) – – WAY-181187 (8.7, Schechter et al., 2008)E-6801 (partial agonist, 8.7, Holenz et al., 2005) Selective antagonists (pKi) GR113808 (9.3–10.3), SB204070 (9.8–10.4), RS100235 (8.7–12.2) SB699551 (8.2) – SB399886 (9.4, Hirst et al., 2006)SB271046 (8.9), SB357134 (8.5, Bromidge et al., 2001), Ro630563 (7.9–8.4) Probes (KD) [3H]GR113808 (50–200 pM), [125I]SB207710 (86 pM – piglet, Brown et al., 1993), [3H]RS57639 (0.25 nM – guinea-pig, Bonhaus et al., 1997)[11C] SB207145 (PET ligand) [3H]5-CT (2.5 nM), [125I]LSD (0.2 nM) [3H]5-CT, [125I]LSD [125I]SB258585 (1.0 nM, Hirst et al., 2000), [3H]Ro630563 (5 nM, Boess et al., 1998), [3H]5-CT, [125I]LSD (2 nM) Nomenclature 5-HT7 Other names 5-HTX, 5-HT1-like Ensembl ID ENSG00000148680 Principal transduction Gs Selective agonists – Selective antagonists (pKi) SB656104 (8.7, Forbes et al., 2002), SB269970 (8.6–8.9 Thomas et al., 2000), SB258719 (7.5) Radioligands (KD) [3H]SB269970 (1.2 nM, Thomas et al., 2000), [3H]5-CT (0.4 nM, Thomas et al., 2000) [3H]LSD (3 nM), [3H]5-HT (1–8 nM) Tabulated pKi and KD values refer to binding to human 5-HT receptors unless indicated otherwise. Unreferenced values are extracted from the NC-IUPHAR database (http://www.iuphar-db.org). The nomenclature of 5-HT1B/5-HT1D receptors has been revised (Hartig et al., 1996). Only the non-rodent form of the receptor was previously called 5-HT1Dβ: the human 5-HT1B receptor (tabulated) displays a different pharmacology to the rodent forms of the receptor due to Thr335 of the human sequence being replaced by Asn in rodent receptors. NAS181 is a selective antagonist of the rodent 5-HT1B receptor. Fananserin and ketanserin bind with high affinity to dopamine D4 and histamine H1 receptors respectively, in addition to 5-HT2A receptors. The human 5-ht5A receptor has been claimed to couple to several signal transduction pathways when stably expressed in C6 glioma cells (Noda et al., 2003). The human orthologue of the mouse 5-ht5B receptor is non-functional due to interruption of the gene by stop codons. In addition to the receptors listed in the table, an ‘orphan’ receptor, unofficially termed 5-HT1P, has been described (Gershon, 1999). Abbreviations: 5-CT, 5-carboxamidotryptamine; 8-OH-DPAT, 8-hydroxy-2-(di-n-propylamino)tetralin; [N-methyl-3H3]AZ10419369, 5-methyl-8-(4-methyl-piperazin-1-yl)-4-oxo-4H-chromene-2-carboxylicacid (4-morpholin-4-yl-phenyl)-amide; BIMU8, (endo-N-8-methyl-8-azabicyclo[3.2.1]oct-3-yl)-2,3-dihydro-3-isopropyl-2-oxo-1H-benzimidazol-1-carboxamide hydrochloride; BRL15572, 3-[4-(3-chlorophenyl) piperazin-1-yl]-1,1,-diphenyl-2-propanol; BW723C86, 1-[5(2-thienylmethoxy)-1H-3-indolyl]propan-2-amine hydrochloride; CP94253: 3- (1,2,5,6-tetrahydro-4-pyridyl)-5-propoxypyrrolo[3, 2-b] pyridine; E-6801, 6-chloro-N-(3-(2-dimethylamino)ethyl)-1H-indol-5-yl)imidazo[2,1-b]thiazole-5-sulfonamide; EGIS-7625, 1-benzyl-4-[(2-nitro-4-methyl-5-amino)-phenyl]-piperazine; FR260010, (N-[3-(4-methyl-1H-imidazol-1-yl)phenyl]-5,6-dihydrobenzo[h]quinazolin-4-amine; GR55562, 3-[3-(dimethylamino)propyl]-4-hydroxy-N-[4-(4-pyridinyl)phenyl]benzamide; GR113808, [1-2[(methylsuphonyl)amino]ethyl]-4-piperidinyl]methyl-1-methyl-1H-indole-3-carboxylate; GR125743, n-[4-methoxy-3-(4-methyl-1-piperizinyl)phenyl]-3-methyl-4-(4-pyrindinyl)benzamide; GTI, 5-hydroxytryptamine-5-O-carboxymethylglycyltyrosinamide; L694247, 2-[5-[3-(4-methylsulphonylamino)benzyl-1,2,4-oxadiazol-5-yl]-1H-indol-3yl] ethanamine; LY334370, 5-(4-flurobenzoyl)amino-3-(1-methylpiperidin-4-yl)-1H-indole fumarate; LY344864, N-[(6R)-6-dimethylamino-6,7,8,9-tetrahydro-5H-carbazo-3-yl]-4-fluorobenzamide; MDL100907, (+/-)2,3-dimethoxyphenyl-1-[2-(4-piperidine)-methanol]; NAD299, (R)-3-N,N-dicyclobutylamino-8-fluoro-[6-3H]-3,4-dihydro-2H-1-benzo pyran-5-carboxamide; NAS181, (R)-(+)-2-[[[3-(morpholinomethyl)-2H-chromen-8-yl]oxy]methyl] morpholine methane sulfonate; p-[18F]MPPF 4-(2′-methoxyphenyl)-1-[2′-(N-2-pyridinyl)-p-fluorobenzamido]-ethyl piperazine; PNU109291, (S)-3,4-dihydro-1-[2-[4-(4-methoxyphenyl)-1-piperazinyl]ethyl]-N-methyl-1H-2-benzopyran-6-carboximide; Ro600175, (S)-2-(6-chloro-5-fluroindol-1-yl)-1-methyethylamine; Ro630563, 4-amino-N-[2,6-bis(methylamino)pyridin-4-yl]benzenesulphonamide; RP62203, 2-[3-(4-(4-fluorophenyl)-piperazinyl)propyl]naphto[1,8- ca]isothiazole-1,1-dioxide; RS57639, 4-amino-5-chloro-2-methoxy benzoic acid 1-(3-[2,3-dihydrobenzo[1,4]dioxin-6yl)-propyl]-piperidin-4yl methyl ester; RS67506, 1-(4-amino-5-chloro-2-methoxyphenyl)-3-[1-(2-methyl sulphonylamino)ethyl-4-piperidinyl]-1-propanone hydrochloride; RS100235, 1-(8-amino-7-chloro-1,4-benzodioxan-5-yl)-5-((3-(3,4-dimethoxyphenyl)prop-1-yl)piperidin-4-yl)propan-1-one; RS102221, 8-[5-(5-amino 2,4-dimethoxyphenyl) 5-oxopentyl]-1,3,8-triazaspiro[4,5]decane-2,4-dione; RS127445, (2-amino-4-(4-fluoronaphthyl-1-yl)-6-isopropylpyrimidine); SB204070, 1-butyl-4-piperidinylmethyl-8-amino-7-chloro-1-4-benzoioxan-5-carboxylate; SB207710, 1-butyl-4-piperidinylmethyl-8-amino-7-iodo-1,4-benzodioxan-5-carboxylate; SB224289,1′-methyl-5[[2′-methyl-4′-)5-methyl-1,2,4-oxadiazol-3-yl)biphenyl-4-yl]carbonyl-2,3,6,7-tetrahydrospiro[furo[2,3-f]indole-3,4′-piperidine]oxalate; SB236057,1′-ethyl-5-(2′-methyl-4′-(5-methyl-1,3,4-oxadiazol-2-yl)biphenyl-4-carbonyl)-2,3,6,7-tetrahydrospiro[furo[2,3-f]indol3-3,4′-piperidine; SB242084, 6-chloro-5-methyl-1-[2-(2-methylpyridyl-3-oxy)-pyrid-5-yl carbamoyl] indoline; SB258585, 4-iodo-N-[4-methoxy-3-(4-methyl-piperazin-1-yl)-phenyl]-benzenesulphonamide; SB258719, (R)-3,N-dimethyl-N-[1-methyl-3-(4-methylpiperidin-1-yl)propyl]benzene sulphonamide; SB269970, (R)-3-(2-(2-(4-methylpiperidin-1-yl)ethyl)pyrrolidine-1-sulphonyl)phenol; SB271046, 5-chloro-N-(4-methoxy-3-piperazin-1-yl-phenyl)-3-methyl-2-benzothiophenesulphonamide; SB357134, N-(2,5-dibromo-3-flurophenyl)-4-methoxy-3-piperazin-1-ylbenzenesulphonamide; SB-399885, N-[3,5-dichloro-2-(methoxy)phenyl]-4-(methoxy)-3-(1-piperazinyl)benzenesulfonamide; SB656104, 6-((R)-2-[2-[4-(4-Chloro-phenoxy)-piperidin-1-yl]-ethyl]-pyrrolidine-1-sulphonyl)-1H-indole hydrochloride; SB699551, 3-cyclopentyl-N-[2-(dimethylamino)ethyl]-N-[(4′-{[(2-phenylethyl)amino]methyl}-4-biphenylyl)methyl]propanamide dihydrochloride; SB714786, 2-methyl-5-({2-[4-(8-quinolinylmethyl)-1-piperazinyl]ethyl}oxy)quinoline; U92016A, (+)-R)-2-cyano-N,N-dipropyl-8-amino-6,7,8,9-tetrahydro-3H-benz[e]indole; UH301, 5-fluoro-8-hydroxy-2-(dipropylamino) tetralin; WAY100635, N-(2-(4-(2-methoxyphenyl)-1-piperazinyl)ethyl)-N-(2-pyridyl)-cyclohexanecarboxamide trichloride, WAY163909, (7bR, 10aR)-1,2,3,4,8,9,10,10a-octahydro-7bH-cyclopenta-[b][1,4]diazepino[6,7,1hi]indole; WAY-181187, 2-[1-(6-chloroimidazo[2,1-b]thiazol-5-ylsulfonyl)-1H-indol-3-yl]ethylamine Further Reading Barnes NM, Sharp T (1999). A review of central 5-HT receptors and their function. Neuropharmacology38: 1083–1152. Bockaert J, Claeysen S, Becamel C, Dumuis A, Marin P (2006). Neuronal 5-HT metabotropic receptors: fine-tuning of their structure, signaling, and roles in synaptic modulation. Cell Tissue Res326: 553–572. Bockaert J, Claeysen S, Compan V, Dumuis A (2008). 5-HT4 receptors: history, molecular pharmacology and brain functions. Neuropharmacology55: 922–931. Bojarski AJ (2006). Pharmacophore models for metabotropic 5-HT receptor ligands. Curr Top Med Chem 6:2005–2026. Bonasera SJ, Tecott LH (2000). Mouse models of serotonin receptor function: toward a genetic dissection of serotonin systems. Pharmac" @default.
- W4211005805 created "2022-02-13" @default.
- W4211005805 date "2009-11-01" @default.
- W4211005805 modified "2023-09-25" @default.
- W4211005805 title "7TM RECEPTORS" @default.
- W4211005805 cites W101723827 @default.
- W4211005805 cites W104197790 @default.
- W4211005805 cites W1253179 @default.
- W4211005805 cites W1481422886 @default.
- W4211005805 cites W1483147211 @default.
- W4211005805 cites W1486256755 @default.
- W4211005805 cites W1488329806 @default.
- W4211005805 cites W1489561788 @default.
- W4211005805 cites W1495857714 @default.
- W4211005805 cites W1496640072 @default.
- W4211005805 cites W149852074 @default.
- W4211005805 cites W1503498325 @default.
- W4211005805 cites W1508835002 @default.
- W4211005805 cites W1509837239 @default.
- W4211005805 cites W1513614477 @default.
- W4211005805 cites W1529957113 @default.
- W4211005805 cites W1540547666 @default.
- W4211005805 cites W1542375841 @default.
- W4211005805 cites W1549691444 @default.
- W4211005805 cites W1551599120 @default.
- W4211005805 cites W1556346244 @default.
- W4211005805 cites W1559798894 @default.
- W4211005805 cites W1573846225 @default.
- W4211005805 cites W1582296909 @default.
- W4211005805 cites W1583513661 @default.
- W4211005805 cites W1585631706 @default.
- W4211005805 cites W1586560131 @default.
- W4211005805 cites W1588811519 @default.
- W4211005805 cites W1598044684 @default.
- W4211005805 cites W1599475851 @default.
- W4211005805 cites W1600405382 @default.
- W4211005805 cites W1601421677 @default.
- W4211005805 cites W1604799242 @default.
- W4211005805 cites W1608128587 @default.
- W4211005805 cites W1640059284 @default.
- W4211005805 cites W1672565987 @default.
- W4211005805 cites W1767991896 @default.
- W4211005805 cites W1769810164 @default.
- W4211005805 cites W1802267091 @default.
- W4211005805 cites W1835964184 @default.
- W4211005805 cites W1847746464 @default.
- W4211005805 cites W1852077611 @default.
- W4211005805 cites W1852348769 @default.
- W4211005805 cites W1853808166 @default.
- W4211005805 cites W1858611398 @default.
- W4211005805 cites W1873518711 @default.
- W4211005805 cites W1880891411 @default.
- W4211005805 cites W1905974175 @default.
- W4211005805 cites W1906479784 @default.
- W4211005805 cites W1908561802 @default.
- W4211005805 cites W1948424572 @default.
- W4211005805 cites W1964037009 @default.
- W4211005805 cites W1964131185 @default.
- W4211005805 cites W1964432542 @default.
- W4211005805 cites W1964869550 @default.
- W4211005805 cites W1965004625 @default.
- W4211005805 cites W1965136813 @default.
- W4211005805 cites W1965796890 @default.
- W4211005805 cites W1965982516 @default.
- W4211005805 cites W1966196831 @default.
- W4211005805 cites W1966549046 @default.
- W4211005805 cites W1966828449 @default.
- W4211005805 cites W1967233163 @default.
- W4211005805 cites W1967340152 @default.
- W4211005805 cites W1967871417 @default.
- W4211005805 cites W1968185291 @default.
- W4211005805 cites W1968552800 @default.
- W4211005805 cites W1968682237 @default.
- W4211005805 cites W1968793799 @default.
- W4211005805 cites W1969002716 @default.
- W4211005805 cites W1969170402 @default.
- W4211005805 cites W1969441974 @default.
- W4211005805 cites W1969444624 @default.
- W4211005805 cites W1969702154 @default.
- W4211005805 cites W1970425577 @default.
- W4211005805 cites W1970596941 @default.
- W4211005805 cites W1970695363 @default.
- W4211005805 cites W1971024460 @default.
- W4211005805 cites W1971251923 @default.
- W4211005805 cites W1971548427 @default.
- W4211005805 cites W1971788857 @default.
- W4211005805 cites W1971865087 @default.
- W4211005805 cites W1971975177 @default.
- W4211005805 cites W1972261780 @default.
- W4211005805 cites W1972289296 @default.
- W4211005805 cites W1972499468 @default.
- W4211005805 cites W1972691065 @default.
- W4211005805 cites W1972722155 @default.
- W4211005805 cites W1972756211 @default.
- W4211005805 cites W1973398386 @default.
- W4211005805 cites W1975262853 @default.
- W4211005805 cites W1975367389 @default.
- W4211005805 cites W1975740938 @default.
- W4211005805 cites W1975888109 @default.
- W4211005805 cites W1976005198 @default.