Matches in SemOpenAlex for { <https://semopenalex.org/work/W4211008049> ?p ?o ?g. }
- W4211008049 endingPage "534" @default.
- W4211008049 startingPage "534" @default.
- W4211008049 abstract "In interval analysis, the fuzzy inclusion relation and the fuzzy order relation are two different concepts. Under the inclusion connection, convexity and non-convexity form a substantial link with various types of inequalities. Moreover, convex fuzzy-interval-valued functions are well known in convex theory because they allow us to infer more exact inequalities than convex functions. Most likely, integral operators play significant roles to define different types of inequalities. In this paper, we have successfully introduced the Riemann–Liouville fractional integrals on coordinates via fuzzy-interval-valued functions (FIVFs). Then, with the help of these integrals, some fuzzy fractional Hermite–Hadamard-type integral inequalities are also derived for the introduced coordinated convex FIVFs via a fuzzy order relation (FOR). This FOR is defined by φ-cuts or level-wise by using the Kulish–Miranker order relation. Moreover, some related fuzzy fractional Hermite–Hadamard-type integral inequalities are also obtained for the product of two coordinated convex fuzzy-interval-valued functions. The main results of this paper are the generalization of several known results." @default.
- W4211008049 created "2022-02-13" @default.
- W4211008049 creator A5000893884 @default.
- W4211008049 creator A5026342382 @default.
- W4211008049 creator A5046581790 @default.
- W4211008049 creator A5068435820 @default.
- W4211008049 creator A5086226297 @default.
- W4211008049 date "2022-02-09" @default.
- W4211008049 modified "2023-10-18" @default.
- W4211008049 title "Some New Concepts Related to Integral Operators and Inequalities on Coordinates in Fuzzy Fractional Calculus" @default.
- W4211008049 cites W1542253753 @default.
- W4211008049 cites W1965955764 @default.
- W4211008049 cites W1972280390 @default.
- W4211008049 cites W1991089207 @default.
- W4211008049 cites W1994178762 @default.
- W4211008049 cites W2006458314 @default.
- W4211008049 cites W2010387581 @default.
- W4211008049 cites W2070545443 @default.
- W4211008049 cites W2075223383 @default.
- W4211008049 cites W2318304944 @default.
- W4211008049 cites W2556396095 @default.
- W4211008049 cites W2749947267 @default.
- W4211008049 cites W2900139894 @default.
- W4211008049 cites W2945033688 @default.
- W4211008049 cites W2949130693 @default.
- W4211008049 cites W2965312062 @default.
- W4211008049 cites W2967110127 @default.
- W4211008049 cites W2980553120 @default.
- W4211008049 cites W2982171697 @default.
- W4211008049 cites W3000320805 @default.
- W4211008049 cites W3015091146 @default.
- W4211008049 cites W3042488718 @default.
- W4211008049 cites W3092551194 @default.
- W4211008049 cites W3093119204 @default.
- W4211008049 cites W3155369488 @default.
- W4211008049 cites W3155664370 @default.
- W4211008049 cites W3160011385 @default.
- W4211008049 cites W3164799850 @default.
- W4211008049 cites W3173350212 @default.
- W4211008049 cites W3187280372 @default.
- W4211008049 cites W3189745929 @default.
- W4211008049 cites W3191144063 @default.
- W4211008049 cites W3200176861 @default.
- W4211008049 cites W3201774862 @default.
- W4211008049 cites W3201806466 @default.
- W4211008049 cites W3210781357 @default.
- W4211008049 cites W3211827563 @default.
- W4211008049 cites W3212456975 @default.
- W4211008049 cites W3215646830 @default.
- W4211008049 cites W3216311631 @default.
- W4211008049 cites W3217383746 @default.
- W4211008049 cites W4200119862 @default.
- W4211008049 cites W4200198800 @default.
- W4211008049 cites W4205977837 @default.
- W4211008049 cites W4206128546 @default.
- W4211008049 cites W4206428202 @default.
- W4211008049 cites W4206639079 @default.
- W4211008049 cites W4206659650 @default.
- W4211008049 cites W4210677456 @default.
- W4211008049 cites W4234969842 @default.
- W4211008049 cites W816848581 @default.
- W4211008049 doi "https://doi.org/10.3390/math10040534" @default.
- W4211008049 hasPublicationYear "2022" @default.
- W4211008049 type Work @default.
- W4211008049 citedByCount "7" @default.
- W4211008049 countsByYear W42110080492022 @default.
- W4211008049 countsByYear W42110080492023 @default.
- W4211008049 crossrefType "journal-article" @default.
- W4211008049 hasAuthorship W4211008049A5000893884 @default.
- W4211008049 hasAuthorship W4211008049A5026342382 @default.
- W4211008049 hasAuthorship W4211008049A5046581790 @default.
- W4211008049 hasAuthorship W4211008049A5068435820 @default.
- W4211008049 hasAuthorship W4211008049A5086226297 @default.
- W4211008049 hasBestOaLocation W42110080491 @default.
- W4211008049 hasConcept C100516043 @default.
- W4211008049 hasConcept C106159729 @default.
- W4211008049 hasConcept C112680207 @default.
- W4211008049 hasConcept C134306372 @default.
- W4211008049 hasConcept C136119220 @default.
- W4211008049 hasConcept C145446738 @default.
- W4211008049 hasConcept C154249771 @default.
- W4211008049 hasConcept C154945302 @default.
- W4211008049 hasConcept C162324750 @default.
- W4211008049 hasConcept C177148314 @default.
- W4211008049 hasConcept C1883856 @default.
- W4211008049 hasConcept C202444582 @default.
- W4211008049 hasConcept C2524010 @default.
- W4211008049 hasConcept C28826006 @default.
- W4211008049 hasConcept C33923547 @default.
- W4211008049 hasConcept C41008148 @default.
- W4211008049 hasConcept C42011625 @default.
- W4211008049 hasConcept C58166 @default.
- W4211008049 hasConcept C72134830 @default.
- W4211008049 hasConceptScore W4211008049C100516043 @default.
- W4211008049 hasConceptScore W4211008049C106159729 @default.
- W4211008049 hasConceptScore W4211008049C112680207 @default.
- W4211008049 hasConceptScore W4211008049C134306372 @default.
- W4211008049 hasConceptScore W4211008049C136119220 @default.