Matches in SemOpenAlex for { <https://semopenalex.org/work/W4211022908> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W4211022908 endingPage "4682" @default.
- W4211022908 startingPage "4673" @default.
- W4211022908 abstract "Recently, Critical Infrastructures (CI) such as energy, power, transportation, and communication have come to be increasingly dependent on advanced information and communication technology (ICT). This change has increased the connection between the Industrial Control System (ICS) supporting the CI and the Internet, resulting in an increase in security threats and allowing a malicious attacker to manipulate and control the ICS arbitrarily. On the other hand, ICS operators are reluctant to install security systems for fear of adverse effects on normal operations due to system changes. Therefore, new research is needed to detect anomalies quickly and identify attack types while ensuring the high availability of ICS. This study proposes a host-based method to detect and identify abnormalities in an Oil Refinery’s Distributed Control System (DCS) network using DCS vendor-proprietary protocols using a proposed method based on the tree-based machine learning algorithm. The results demonstrate that the proposed method can effectively detect an abnormality with the eXtreme Gradient Boosting (XGB) classifier, with up to 99% accuracy. Taken together, the results of this study contribute to the accurate detection of abnormal events and identification of attack types on the network without disrupting the normal operation of the DCS in the Oil Refinery." @default.
- W4211022908 created "2022-02-13" @default.
- W4211022908 creator A5030293615 @default.
- W4211022908 creator A5063105336 @default.
- W4211022908 creator A5069722836 @default.
- W4211022908 creator A5091602017 @default.
- W4211022908 date "2022-11-01" @default.
- W4211022908 modified "2023-09-27" @default.
- W4211022908 title "Intrusion Detection and Identification Using Tree-Based Machine Learning Algorithms on DCS Network in the Oil Refinery" @default.
- W4211022908 cites W1550654601 @default.
- W4211022908 cites W2039427951 @default.
- W4211022908 cites W2321407374 @default.
- W4211022908 cites W2619874920 @default.
- W4211022908 cites W2735927200 @default.
- W4211022908 cites W2801724071 @default.
- W4211022908 cites W2883514760 @default.
- W4211022908 cites W2888802852 @default.
- W4211022908 cites W2908047417 @default.
- W4211022908 cites W2910314742 @default.
- W4211022908 cites W2920215781 @default.
- W4211022908 cites W2921305286 @default.
- W4211022908 cites W2958780305 @default.
- W4211022908 cites W2963563709 @default.
- W4211022908 cites W2976140009 @default.
- W4211022908 cites W2991409407 @default.
- W4211022908 cites W3009315908 @default.
- W4211022908 cites W3024669438 @default.
- W4211022908 cites W3092030485 @default.
- W4211022908 cites W3140476622 @default.
- W4211022908 doi "https://doi.org/10.1109/tpwrs.2022.3150084" @default.
- W4211022908 hasPublicationYear "2022" @default.
- W4211022908 type Work @default.
- W4211022908 citedByCount "4" @default.
- W4211022908 countsByYear W42110229082022 @default.
- W4211022908 countsByYear W42110229082023 @default.
- W4211022908 crossrefType "journal-article" @default.
- W4211022908 hasAuthorship W4211022908A5030293615 @default.
- W4211022908 hasAuthorship W4211022908A5063105336 @default.
- W4211022908 hasAuthorship W4211022908A5069722836 @default.
- W4211022908 hasAuthorship W4211022908A5091602017 @default.
- W4211022908 hasConcept C105168734 @default.
- W4211022908 hasConcept C11413529 @default.
- W4211022908 hasConcept C124101348 @default.
- W4211022908 hasConcept C127413603 @default.
- W4211022908 hasConcept C154945302 @default.
- W4211022908 hasConcept C182590292 @default.
- W4211022908 hasConcept C2775924081 @default.
- W4211022908 hasConcept C31258907 @default.
- W4211022908 hasConcept C35525427 @default.
- W4211022908 hasConcept C40071531 @default.
- W4211022908 hasConcept C41008148 @default.
- W4211022908 hasConcept C548081761 @default.
- W4211022908 hasConceptScore W4211022908C105168734 @default.
- W4211022908 hasConceptScore W4211022908C11413529 @default.
- W4211022908 hasConceptScore W4211022908C124101348 @default.
- W4211022908 hasConceptScore W4211022908C127413603 @default.
- W4211022908 hasConceptScore W4211022908C154945302 @default.
- W4211022908 hasConceptScore W4211022908C182590292 @default.
- W4211022908 hasConceptScore W4211022908C2775924081 @default.
- W4211022908 hasConceptScore W4211022908C31258907 @default.
- W4211022908 hasConceptScore W4211022908C35525427 @default.
- W4211022908 hasConceptScore W4211022908C40071531 @default.
- W4211022908 hasConceptScore W4211022908C41008148 @default.
- W4211022908 hasConceptScore W4211022908C548081761 @default.
- W4211022908 hasIssue "6" @default.
- W4211022908 hasLocation W42110229081 @default.
- W4211022908 hasOpenAccess W4211022908 @default.
- W4211022908 hasPrimaryLocation W42110229081 @default.
- W4211022908 hasRelatedWork W2120549846 @default.
- W4211022908 hasRelatedWork W2348846906 @default.
- W4211022908 hasRelatedWork W2362542061 @default.
- W4211022908 hasRelatedWork W2363068348 @default.
- W4211022908 hasRelatedWork W2365498287 @default.
- W4211022908 hasRelatedWork W2366221835 @default.
- W4211022908 hasRelatedWork W2367444729 @default.
- W4211022908 hasRelatedWork W2377356555 @default.
- W4211022908 hasRelatedWork W2517190875 @default.
- W4211022908 hasRelatedWork W4205705013 @default.
- W4211022908 hasVolume "37" @default.
- W4211022908 isParatext "false" @default.
- W4211022908 isRetracted "false" @default.
- W4211022908 workType "article" @default.