Matches in SemOpenAlex for { <https://semopenalex.org/work/W4211023118> ?p ?o ?g. }
- W4211023118 endingPage "284" @default.
- W4211023118 startingPage "217" @default.
- W4211023118 abstract "Abstract Network representation learning aims to embed the vertexes in a network into low-dimensional dense representations, in which similar vertices in the network should have “close” representations (usually measured by cosine similarity or Euclidean distance of their representations). The representations can be used as the feature of vertices and applied to many network study tasks. In this chapter, we will introduce network representation learning algorithms in the past decade. Then we will talk about their extensions when applied to various real-world networks. Finally, we will introduce some common evaluation tasks of network representation learning and relevant datasets." @default.
- W4211023118 created "2022-02-13" @default.
- W4211023118 creator A5002250184 @default.
- W4211023118 creator A5043098453 @default.
- W4211023118 creator A5046448314 @default.
- W4211023118 date "2020-01-01" @default.
- W4211023118 modified "2023-10-16" @default.
- W4211023118 title "Network Representation" @default.
- W4211023118 cites W1987810983 @default.
- W4211023118 cites W1992709202 @default.
- W4211023118 cites W1994473607 @default.
- W4211023118 cites W2015953751 @default.
- W4211023118 cites W2046253692 @default.
- W4211023118 cites W2053186076 @default.
- W4211023118 cites W2054060039 @default.
- W4211023118 cites W2062797058 @default.
- W4211023118 cites W2063909949 @default.
- W4211023118 cites W2064675550 @default.
- W4211023118 cites W2075220720 @default.
- W4211023118 cites W2086254934 @default.
- W4211023118 cites W2102187991 @default.
- W4211023118 cites W2103126699 @default.
- W4211023118 cites W2112085250 @default.
- W4211023118 cites W2112796928 @default.
- W4211023118 cites W2116341502 @default.
- W4211023118 cites W2127492100 @default.
- W4211023118 cites W2139694940 @default.
- W4211023118 cites W2151936673 @default.
- W4211023118 cites W2153959628 @default.
- W4211023118 cites W2158787690 @default.
- W4211023118 cites W2161984370 @default.
- W4211023118 cites W2167482691 @default.
- W4211023118 cites W2168627253 @default.
- W4211023118 cites W2267186426 @default.
- W4211023118 cites W2290847742 @default.
- W4211023118 cites W2309415944 @default.
- W4211023118 cites W2393319904 @default.
- W4211023118 cites W2472954632 @default.
- W4211023118 cites W2552839021 @default.
- W4211023118 cites W2558460151 @default.
- W4211023118 cites W2581887665 @default.
- W4211023118 cites W2600702321 @default.
- W4211023118 cites W2604314403 @default.
- W4211023118 cites W2604942799 @default.
- W4211023118 cites W2605659599 @default.
- W4211023118 cites W2606202972 @default.
- W4211023118 cites W2612872092 @default.
- W4211023118 cites W2739747431 @default.
- W4211023118 cites W2788284887 @default.
- W4211023118 cites W2788667846 @default.
- W4211023118 cites W2789042518 @default.
- W4211023118 cites W2798749466 @default.
- W4211023118 cites W2887603607 @default.
- W4211023118 cites W2890187992 @default.
- W4211023118 cites W2892163801 @default.
- W4211023118 cites W2911286998 @default.
- W4211023118 cites W2919115771 @default.
- W4211023118 cites W2950336186 @default.
- W4211023118 cites W2962756421 @default.
- W4211023118 cites W2962779575 @default.
- W4211023118 cites W2962946486 @default.
- W4211023118 cites W2962985038 @default.
- W4211023118 cites W2963020213 @default.
- W4211023118 cites W2963021451 @default.
- W4211023118 cites W2963076818 @default.
- W4211023118 cites W2963165299 @default.
- W4211023118 cites W2963175158 @default.
- W4211023118 cites W2963224980 @default.
- W4211023118 cites W2963406064 @default.
- W4211023118 cites W2963486920 @default.
- W4211023118 cites W2963497309 @default.
- W4211023118 cites W2963707260 @default.
- W4211023118 cites W2963791934 @default.
- W4211023118 cites W2963920355 @default.
- W4211023118 cites W2963961878 @default.
- W4211023118 cites W2964080601 @default.
- W4211023118 cites W2964094751 @default.
- W4211023118 cites W2964236544 @default.
- W4211023118 cites W2965635372 @default.
- W4211023118 cites W2979300990 @default.
- W4211023118 cites W3100848837 @default.
- W4211023118 cites W3104097132 @default.
- W4211023118 cites W3104717349 @default.
- W4211023118 cites W3105705953 @default.
- W4211023118 cites W4285716886 @default.
- W4211023118 doi "https://doi.org/10.1007/978-981-15-5573-2_8" @default.
- W4211023118 hasPublicationYear "2020" @default.
- W4211023118 type Work @default.
- W4211023118 citedByCount "1" @default.
- W4211023118 countsByYear W42110231182023 @default.
- W4211023118 crossrefType "book-chapter" @default.
- W4211023118 hasAuthorship W4211023118A5002250184 @default.
- W4211023118 hasAuthorship W4211023118A5043098453 @default.
- W4211023118 hasAuthorship W4211023118A5046448314 @default.
- W4211023118 hasBestOaLocation W42110231181 @default.
- W4211023118 hasConcept C103278499 @default.
- W4211023118 hasConcept C115961682 @default.
- W4211023118 hasConcept C120174047 @default.