Matches in SemOpenAlex for { <https://semopenalex.org/work/W4211026276> ?p ?o ?g. }
- W4211026276 endingPage "509" @default.
- W4211026276 startingPage "473" @default.
- W4211026276 abstract "Free Access References Marcello Lappa, Marcello Lappa Naples, ItalySearch for more papers by this author Book Author(s):Marcello Lappa, Marcello Lappa Naples, ItalySearch for more papers by this author First published: 24 July 2012 https://doi.org/10.1002/9781118342411.refs AboutPDFPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShareShare a linkShare onFacebookTwitterLinked InRedditWechat References Abe, Y., Ueno, I. and Kawamura, H. (2007) Effect of shape of HZ liquid bridge on particle accumulation structure (PAS). Microgravity Sci. Technol., 19 (3–4), 84– 86. Abshagen, J., Lopez, J.M., Marques, F. and Pfister, G. (2005a) Mode competition of rotating waves in reflection-symmetric Taylor-Couette flow. J. Fluid Mech., 540, 269– 299. Abshagen, J., Lopez, J.M., Marques, F. and Pfister, G. (2005b) Symmetry breaking via global bifurcations of modulated rotating waves in hydrodynamics. Phys. Rev. Lett., 94, 074101. Abshagen, J., Lopez, J.M., Marques, F. and Pfister, G. (2008) Bursting dynamics due to a homoclinic cascade in Taylor–Couette flow. J. Fluid Mech., 613, 357– 384. Achatz, U., Schmitz, G. and Greisiger, K-M. (1995) Principal interaction patterns in baroclinic wave life cycles. J. Atmos. Sci., 52 (18), 3201– 3213. Achterberg, R.K. and Ingersoll, A.P. (1994) Numerical-simulation of baroclinic Jovian vortices. J. Atmos. Sci., 51, 541– 562. Agullo, O. and Verga, A.D. (1997) Exact two vortices solutions of Navier-Stokes equations. Phys. Rev. Lett., 78, 2361– 2364. Agullo, O. and Verga, A. (2001) Effect of viscosity in the dynamics of two point vortices: exact results. Phys. Rev. E, 63, 056304-1– 056304-14. Alfredsson, P.H. and Persson, H. (1989) Instabilities in channel flow with system rotation. J. Fluid Mech., 202, 543– 557. Ali, M. and Weidman, P.D. (1990) On the stability of circular Couette flow with radial heating. J. Fluid Mech., 220, 53– 84. Allison, M. (2000) A similarity model for the windy jovian thermocline. Planet. Space Sci., 48, 753– 774. Allison, M., Godfrey, D.A. and Beebe, R.F. (1990) A wave dynamical interpretation of Saturn's polar hexagon. Science, 247, 1061– 1063. Andereck, C.D., Liu, S.S. and Swinney, H.L. (1986) Flow regimes in a circular Couette system with independently rotating cylinders. J. Fluid Mech., 164, 155– 183. Ardes, M., Busse, F.H. and Wicht, J. (1997) Thermal convection in rotating spherical shells. Phys. Earth Planet. Inter., 99, 55– 67. Atkinson, D.H., Ingersoll, A.P. and Seiff, A. (1997) Deep zonal winds on Jupiter: update of Doppler tracking the Galileo probe from the orbiter. Nature, 388, 649– 650. Atkinson, D.H., Pollack, J.B. and Seiff, A. (1996) Galileo Doppler measurements of the deep zonal winds at Jupiter. Science, 272, 842– 843. Atkinson, D.H., Pollack, J.B. and Seiff, A. (1998) The Galileo Probe doppler wind experiment: measurement of the deep zonal winds on Jupiter. J. Geophys. Res., 103 (E10), 22911– 22928. Aubert, J., Brito, D., Nataf, H-C. et al. (2001) A systematic experimental study of rapidly rotating spherical convection in water and liquid gallium. Phys. Earth Planet. Inter., 128 (1–4), 51– 74. Aubert, J., Gillet, N. and Cardin, P. (2003) Quasigeostrophic models of convection in rotating spherical shells. Geochem. Geophys. Geosys., 4 (7), 1052 (19 pp). Auer, M., Busse, F.H. and Clever, R.M. (1995) Three-dimensional convection driven by centrifugal buoyancy. J. Fluid Mech., 301, 371– 382. Aurnou, J.M. and Olson, P.L. (2001) Strong zonal winds from thermal convection in a rotating spherical shell. Geophys. Res. Lett., 28 (13), 2557– 2559. Avalos-Zuniga, R., Plunian, F. and Radler, K.H. (2009) Rossby waves and α-effect. Geophys. Astrophys. Fluid Dyn., 103 (5), 375– 396. Ayotte, B.A. and Fernando, H.J.S. (1994) The motion of a turbulent thermal in the presence of background rotation. J. Atmos. Sci., 51 (13), 1989– 1994. Azami, T., Nakamura, S., Eguchi, M. and Hibiya, T. (2001) The role of surface-tension-driven flow in the formation of a surface pattern on a Czochralski silicon melt. J. Cryst. Growth, 233 (1–2), 99– 107. Azouni, A., Bolton, E.W. and Busse, F.H. (1986) Convection driven by centrifugal buoyancy in a rotating annulus. Geophys. Astrophys. Fluid Dyn., 34 (4), 301– 317. Badger, J. and Hoskins, B.J. (2001) Simple initial value problems and mechanisms for baroclinic growth. J. Atmos. Sci., 58, 38– 49. Baines, P.G. (1976) The stability of planetary waves on a sphere. J. Fluid Mech., 78, 93– 213. Baines, P.G. and Mitsudera, H. (1994) On the mechanism of shear-flow instabilities. J. Fluid Mech., 276, 327– 342. Baines, K.H., Momary, T.W., Fletcher, L.N. et al. (2009) Saturn's north polar cyclone and hexagon at depth revealed by Cassini/VIMS. Planet. Space Sci., 57, 1671– 1681. Baines, K.H., Momary, T.W., Temma, T. et al. (2007) The structure of Saturn's poles determined by Cassini/VIMS: Constraints on winds and horizontal and vertical cloud distributions. Bull. Am. Astron. Soc., 38, 423. Bajaj, K.M.S., Ahlers, G. and Pesch, W. (2002) Rayleigh-Bénard convection with rotation at small Prandtl numbers. Phys. Rev. E, 65, 056309. Bajaj, K.M.S., Liu, J., Naberhuis, B. and Ahlers, G. (1998) Square patterns in Rayleigh-Bénard convection with rotation about a vertical axis. Phys. Rev. Lett., 81 (4), 806– 809. Baker, L. and Spiegel, E.A. (1975) Modal analysis of convection in a rotating fluid. J. Atmos. Sci., 32, 1909– 1920. Baldwin, M.P., Rhines, P.B., Huang, H-P. and McIntyre, M.E. (2007) The jet-stream conundrum. Science, 315 (5811), 467– 468. Ball, K.S. and Farouk, B. (1988) Bifurcation phenomena in Taylor–Couette flow with buoyancy effects. J. Fluid Mech., 197, 479– 501. Banerjee, J. and Muralidhar, K. (2006) Simulation of transport processes during Czochralski growth of YAG crystals. J. Cryst. Growth, 286, 350– 364. Barbosa Aguiar, A.C., Read, P.L., Wordsworth, R.D. et al. (2010) A laboratory model of Saturn's North Polar Hexagon. Icarus, 206 (2), 755– 763. Barcilon, V. (1964) Role of Ekman layers in the stability of the symmetric regime obtained in a rotating annulus. J. Atmos. Sci., 21, 291– 299. Barcilon, V. and Pedlosky, J. (1967) On the steady motions produced by a stable stratification in a rapidly rotating fluid. J. Fluid Mech., 29, 673– 690. Barnes, A.H. (1955) Pumping of Liquid Metals. International Conference on the Peaceful Uses of Atomic Energy, vol. 9, p. 259. Bartello, P. and Holloway, G. (1991) Passive scalar transport in beta-plane turbulence. J. Fluid Mech., 223, 521– 536. Barz, R.U., Gerbeth, G., Wunderwald, U. et al. (1997) Modelling of the isothermal melt flow due to rotating magnetic fields in crystal growth. J. Cryst. Growth, 180, 410– 421. Bassom, A.P. and Zhang, K. (1994) Strongly nonlinear convection cells in rapidly rotating fluid layer. Geophys. Astrophys. Fluid Dyn., 76, 223– 238. Bassom, A.P. and Zhang, K. (1998) Finite amplitude thermal inertial waves in a rotating fluid layer. Geophys. Astrophys. Fluid Dyn., 87, 193– 214. Batchelor, G.K. (1951) Note on a class of solutions of the Navier-Stokes equations representing steady rotationally-symmetric flow. Q. J. Mech., 1, 29– 41. Batchelor, G.K. (1969) Computation of the energy spectrum in homogeneous, two-dimensional turbulence. Phys. Fluids, 12 (12), 233– 239. Bau, H.H. (1999) Control of Marangoni-Bénard convection. Int. J. Heat Mass Transf., 42, 1327– 1341. Bauer, H.F. and Eidel, W. (1998) Axisymmetric thermocapillary convection in a slowly rotating annular cylindrical container. Heat Mass Transf., 34 (1), 79– 90. Becker, N., Scheel, J.D., Cross, M.C. and Ahlers, G. (2006) Effect of the centrifugal force on domain chaos in Rayleigh-Bénard convection. Phys. Rev. E, 73, 066309 (8 pp). Bèland, M. (1978) The evolution of a nonlinear rossby wave critical level: effects of viscosity. J. Atmos. Sci., 35 (3), 1802– 1815. Bénard, H. (1900) Les tourbillons cellulaires dans une nappe liquide. Rev. Gén. Sci. Pure Appl., 11, 1261– 1271, 1309–1328. Bénard, H. (1901) Les tourbillons cellulaires dans une nappe liquide transportant de la chaleur par convection en regime permanent. Ann. Chim. Phys., 23, 62– 144. Benjamin, T.B. (1978a) Bifurcation phenomena in steady flows of a viscous fluid. Proc. R. Soc. Lond. A, 359, 1– 26. Benjamin, T.B. (1978b) Bifurcation phenomena in steady flows of a viscous fluid. II. Experiments. Proc. R. Soc. Lond. A, 359, 27– 43. Benjamin, T.B. and Feir, J.E. (1967) Disintegration of wave trains on deep water. 1. Theory. J. Fluid Mech., 27, 417– 430. Benjamin, T.B. and Mullin, T. (1982) Notes on the multiplicity of flows in the Taylor experiment. J. Fluid Mech., 121, 219– 230. Benzi, R., Briscolini, M., Colella, M. and Santangelo, P. (1992) A simple point vortex model for two-dimensional decaying turbulence. Phys. Fluids A, 4, 1036– 1039. Benzi, R., Paladin, G., Patarnello, S. et al. (1986) Intermittency and coherent structures in two-dimensional turbulence. J. Phys. A, 19, 3771– 3784. Benzi, R., Patarnello, S. and Santangelo, P. (1987) On the statistical properties of two-dimensional decaying turbulence. Europhys. Lett., 3 (7), 811– 818. Benzi, R., Patarnello, S. and Santangelo, P. (1988) Self-similar coherent structures in twodimensional decaying turbulence. J. Phys. A: Math. Gen., 21, 1221– 1237. Bernoff, A.J. and Lingevitch, J.F. (1994) Rapid relaxation of an axisymmetric vortex. Phys. Fluids, 6 (11), 3717– 3723. Birkett, H.R. and Thorpe, A.J. (1997) Superposing semi-geostrophic potential-vorticity anomalies. Q. J. R. Meteorol. Soc., 123 (543, Part A), 2157– 2163. Bishop, C.H. and Heifetz, E. (2000) Apparent absolute instability and the continuous spectrum. J. Atmos. Sci., 57, 3592– 3608. Bishop, C.H. and Thorpe, A.J. (1994) Potential vorticity and the electrostatics analogy: Quasi-geostrophic theory. Q. J. R. Meteorol. Soc., 120 (517), 713– 731. Bjerknes, J. and Homboe, J. (1944) On the theory of cyclones. J. Meteorol., 1, 1– 22. Blackburn, H.M. and Lopez, J.M. (2002) Modulated rotating waves in an enclosed swirling flow. J. Fluid Mech., 465, 33– 58. Block, M.J. (1956) Surface tension as the cause of Bénard cells and surface deformation of a liquid film. Nature, 178, 650– 651. Bodenschatz, E., Pesch, W. and Ahlers, G. (2000) Recent developments in Rayleigh-Bénard convection. Annu. Rev. Fluid Mech., 32, 709– 778. Bödewadt, U.T. (1940) Rotary currents on fixed grounds. Z. Angew. Math. Mech., 20 (5), 241– 253. Boer, G.J. and Shepherd, T.G. (1983) Large-scale two-dimensional turbulence in the atmosphere. J. Atmos. Sci., 40, 164– 184. Booker, J.R. and Bretherton, F.P. (1967) The critical layer for internal gravity waves in a shear flow. J. Fluid Mech., 27, 513– 519. Bordja, L., Tuckerman, L.S., Witkowski, L.M. et al. (2010) Influence of counter-rotating von Kármán flow on cylindrical Rayleigh-Bénard convection. Phys. Rev. E, 81 (3), 036322 (16 pp). Boubnov, B.M. and Golitsyn, G.S. (1986) Experimental study of convective structures in rotating fluids. J. Fluid Mech., 167, 503– 531. Boubnov, B.M. and Golitsyn, G.S. (1990) Temperature and velocity field regimes of convective motions in a rotating plane fluid layer. J. Fluid Mech., 219, 215– 239. Boubnov, B.M. and Golitsyn G.S. (1995) Convection in Rotating Fluids, Fluid Mechanics and its Applications, Vol. 29, Springer, 244 p. Bouchut, F., Le Sommer, J. and Zeitlin, V. (2005) Transport and mixing during the breaking of balanced and unbalanced equatorial waves. Chaos, 15, doi: 10.1063/1.1857171 Boussinesq, J. (1903) Théorie Analytique de la Chaleur, Mise en Harmonie avec la Thermodynamique et Avec la Théorie Mécanique de la Lumiére, bol. 2, Gauthier-Villars, Paris, pp. 1901– 1903. Boyd, J.P. (1980) Equatorial solitary waves. Part 1: Rossby solitons. J. Phys. Oceanogr., 10, 1699– 1717. Bracco, A., McWilliams, J.C., Murante, G. et al. (2000) Revisiting freely decaying two-dimensional turbulence at millennial resolution. Phys. Fluids, 12 (11), 2931– 2941. Brandle, C.D. (1982) Flow transitions in Czochralski oxide melts. J. Cryst. Growth, 57 (1), 65– 70. Bretherton, F.P. (1966a) Critical layer instability in baroclinic flows. Q. J. R. Meteorol. Soc., 92, 325– 334. Bretherton, F.P. (1966b) Baroclinic instability and the short-wave cut-off in terms of potential vorticity. Q. J. R. Meteorol. Soc., 92, 335– 345. Breuer, M., Wessling, S., Schmalz, J. and Hansen, U. (2004) Effect of inertia in Rayleigh-Bénard convection. Phys. Rev. E, 69, 026302. Brindley, J. and Moroz, I.M. (1980) Lorenz attractor behaviour in a continuously stratified baroclinic fluid. Phys. Lett. A, 77 (6), 441– 444. Brøns, M., Voigt, L.K. and Sørensen, J.N. (2001) Topology of vortex breakdown bubbles in cylinder with rotating bottom and free surface. J. Fluid Mech., 428, 133– 148. Brown, S.N. and Stewartson, K. (1978) The evolution of the critical layer of a rossby wave. Part II. Geophys. Astrophys. Fluid Dyn., 10 (1), 1– 24. Brummell, N., Hart, J.E. and Lopez, J.M. (2000) On the flow induced by centrifugal buoyancy in a differentially-heated rotating cylinder. Theor. Comput. Fluid Dyn., 14, 39– 54. Buell, J.C. and Catton, I. (1983) Effect of rotation on the stability of a bounded cylindrical layer of fluid heated from below. Phys. Fluids, 26, 892– 896. Burger, A.P. (1962) On the non-existence of critical wavelengths in a continuous baroclinic stability problem. J. Atmos. Sci., 19, 31– 38. Burger, A.P. (1966) Instability associated with the continuous spectrum in a baroclinic flow. J. Atmos. Sci., 23, 272– 277. Burrows, A. (2005) A theoretical look at the direct detection of giant planets outside the Solar System. Nature, 443, 261– 268. Busse, F.H. (1970) Thermal instabilities in rapidly rotating systems. J. Fluid Mech., 44, 441– 460. Busse, F.H. (1976) A simple model of convection in the Jovian atmosphere. Icarus, 29 (2), 255– 260. Busse, F.H. (1983) A model of mean zonal flows in the major planets. Geophys. Astrophys. Fluid Dyn., 23, 153– 174. Busse, F.H. (1994) Convection driven zonal flows and vortices in the major planets. Chaos, 4 (2), 123– 134. Busse, F.H. (2002) Convection flows in rapidly rotating spheres and their dynamo action. Phys. Fluids, 14, 1301– 1314 Busse, F.H. and Clever, R.M. (1979) Instabilities of convection rolls in a fluid of moderate Prandtl number. J. Fluid Mech., 91, 319– 335. Busse, F.H. and Cuong, P.G. (1977) Convection in rapidly rotating spherical fluid shells. Geophys. Astrophys. Fluid Dyn., 8, 17– 44. Busse, F.H., Hartung, G., Jaletzky, M. and Sommerman, G. (1997) Experiments on thermal convection in rotating systems motivated by planetary problems. Dyn. Atmos. Oceans, 27, 161– 174. Busse, F.H. and Heikes, K.E. (1980) Convection in a rotating layer: a simple case of turbulence. Science, 208, 173– 175. Busse, F.H. and Carrigan, C.R. (1976) Laboratory simulation of thermal convection in rotating planets and stars. Science, 191, 81– 83. Busse, F.H. and Simitev, R. (2004) Inertial convection in rotating fluid spheres. J. Fluid Mech., 498, 23– 30. Buzyna, G., Pfeffer, R.L. and Kung, R. (1984) Transitions to geostrophic turbulence in a rotating, differentially heated annulus of fluid. J. Fluid Mech., 145, 377– 403. Cabot, W., Hubickyj, O., Pollack, J.B. et al. (1990) Direct numerical simulations of turbulent convection: I. Variable gravity and uniform rotation. Geophys. Astrophys. Fluid Dyn., 53, 1– 42. Caillol, P. and Grimshaw, R.H. (2008) Rossby Solitary waves in the presence of a critical layer, IUTAM Symposium on Hamiltonian Dynamics, Vortex Structures, Turbulence, IUTAM Bookseries, Vol. 6, IUTAM, pp. 341– 352, doi: 10.1007/978-1-4020-6744-0_30 Campbell, L.J. and Maslowe, S.A. (1998) Forced Rossby wave packets in barotropic shear flows with critical layers. Dyn. Atmos. Oceans, 28 (1), 9– 37. Campbell, L.J. and Maslowe, S.A. (2001) A numerical simulation of the nonlinear critical layer evolution of a forced Rossby wave packet in a zonal shear flow. Math. Comput. Simul., 55 (4–6), 365– 375. Cardin, P. and Olson, P. (1992) An experimental approach to thermochemical convection in the Earth's core. Geophys. Res. Lett., 19, 1995– 1998. Cardin, P. and Olson, P. (1994) Chaotic thermal convection in a rapidly rotating spherical shell: consequences for flow in the outer core. Phys. Earth Planet. Inter., 82 (3–4), 235– 259. Carnevale, G.F., McWilliams, J.C., Pomeau, Y. et al. (1991) Evolution of vortex statistics in two-dimensional turbulence. Phys. Rev. Lett., 66, 2735– 2737. Carnevale, G.F., McWilliams, J.C., Pomeau, Y. et al. (1992) Rates, pathways, and end states of nonlinear evolution in decaying twodimensional turbulence: scaling theory versus selective decay. Phys. Fluids A, 4, 1314– 1316. Carrigan, C.R. and Busse, F.H. (1983) An experimental and theoritical investigation of the onset of convection in rotating spherical shells. J. Fluid Mech., 126, 287. Carruthers, J.R. and Grasso, M. (1972) Studies of floating liquid zones in simulated zero gravity. J. Appl. Phys., 43 (2), 436– 445. Carton, X. (2001) Hydrodynamical modeling of oceanic vortices. Surveys Geophys., 22, 179– 263. Carton, X.J., Flierl, G.R., Perrot, X. et al. (2010) Explosive instability of geostrophic vortices. Part 1: baroclinic instability. Theor. Comput. Fluid Dyn., 24 (1–4), 125– 130. Carton, X., Flierl, G.R. and Polvani, L.M. (1989) The generation of tripoles from unstable axisymmetric isolated vortex structures. Europhys. Lett., 9, 339– 344. Carton, X.J. and McWilliams, J.C. (1996) Nonlinear oscillatory evolution of a baroclinically unstable geostrophic vortex. Dyn. Atmos. Oceans, 24 (1–4), 207– 214. Castrejon-Pita, A.A. and Read, P.L. (2007) Baroclinic waves in an air-filled thermally driven rotating annulus. Phys. Rev. E, 75 (2), 026301 (10 pp). Cerretelli, C. and Williamson, C.H.K. (2003) The physical mechanism for vortex merging. J. Fluid Mech., 475, 41– 77. Chandrasekhar, S. (1953) The instability of a layer of fluid heated below and subjectto Coriolis forces. Proc. R. Soc. Lond. A, 217, 306– 327. Chandrasekhar, S. (1961) Hydrodynamic and Hydromagnetic Stability, Clarendon Press, Oxford (Republished by Dover publications, New York, 1981). Chang, C.E. (1978) Computer simulation of convection in Floating zone melting I. Pure rotation driven Flows. J. Cryst. Growth, 44 (2), 168– 177. Chang, E.K.M. (1992) Resonating neutral modes of the Eady model. J. Atmos. Sci., 49, 2452– 2463. Chang, F.P. and Chiang, K.T. (1998) Oscillatory instability analysis of Bénard-Marangoni convection in a rotating fluid under a uniform magnetic field. Int. J. Heat Mass Transf., 41 (17), 2667– 2675. Char, M.I., Chiang, K.T. and Jou, J.J. (1997) Oscillatory instability analysis of Bénard-Marangoni convection in a rotating fluid with internal heat generation. Int. J. Heat Mass Transf., 40 (4), 857– 867. Charney, J.G. (1947) The dynamics of long waves in a baroclinic westerly current. J. Meteor., 4, 135– 162. Charney, J. G. (1949) On a physical basis for numerical prediction of large-scale motions in the atmosphere. J. Meteor., 6, 371– 385. Charney, J.G. (1971) Geostrophic turbulence. J. Atmos. Sci., 28, 1087– 1095. Charney, J.G. and Stern, M.E. (1962) On the stability of internal baroclinic jet in a rotating atmosphere. J. Atmos. Sci., 19, 159– 172. Chekhlov, A., Orszag, S.A., Sukoriansky, S. et al. (1996) The effect of small-scale forcing on large-scale structures in twodimensional flows. Physica D, 98, 321– 334. Chen, J.C. and Kuo, J.Y. (1990) The linear stability of steady circular Couette flow with a small radial temperature gradient. Phys. Fluids A, 2 (9), 1585– 1592. Chen, S. and Li, M. (2007) Flow instability of molten gaas in the Czochralski configuration. J. Mater. Sci. Technol., 23 (3), 395– 395. Cho, J.Y-K. and Polvani, L.M. (1996a) The morphogenesis of bands and zonal winds in the atmospheres on the giant outer planets. Science, 273, 335– 337. Cho, J.Y-K. and Polvani, L.M. (1996b) The formation of jets and vortices from freely-evolving shallow water turbulence on a sphere. Phys. Fluids, 8, 1531– 1552. Choi, W., Prasad, D., Camasa, R. and Ecke, R.E. (2004) Traveling waves in rotating Rayleigh-Bénard convection. Phys. Rev. E, 69, 056301. Choi, D.S., Showman, A.P. and Vasavada, A.R. (2010) The evolving flow of Jupiter's White Ovals and adjacent cyclones. Icarus, 207, 359– 372. Christensen, U.R. (2001) Zonal flow driven by deep convection on the major planets. Geophys. Res. Lett., 28, 2553– 2556. Christensen, U.R. (2002) Zonal flow driven by strongly supercritical convection in rotating spherical shells. J. Fluid Mech., 470, 115– 133. Chun, C-H. (1980) Marangoni convection in a floating zone under reduced gravity. J. Cryst. Growth, 48 (4), 600– 610. Chun, C-H. and Wuest, W. (1982) Suppression of temperature oscillations of thermal Marangoni convection in a floating zone by superimposing of rotating flows. Acta Astronaut., 9 (4), 225– 230. Clever, R.M. and Busse, F.H. (1979) Nonlinear properties of convection rolls in a horizontal layer rotating about a vertical axis. J. Fluid Mech., 94 (4), 609– 627. Clever, R.M. and Busse, F.H. (1991) Instabilities of longitudinal rolls in the presence of Poiseuille flow. J. Fluid Mech., 229, 517– 529. Clever, R.M. and Busse, F.H. (2000) Convection in a low Prandtl number fluid layer rotating about a vertical axis. Eur. J. Mech. B/Fluids, 19, 213– 227. Clune, T. and Knobloch, E. (1993) Pattern selection in rotating convection with experimental boundary conditions. Phys. Rev. E, 47, 2536– 2550. Colin de Verdière, A. (1980) Quasi-geostrophic turbulence in a rotating homogeneous fluid. Geophys. Astrophys. Fluid Dyn., 15 (1), 213– 251. Condie, S.A. and Rhines, P.B. (1994) A. convective model for the zonal jets in the atmospheres of Jupiter and Saturn. Nature, 367, 711– 713. Conrath, B.J., Flasar, F.M., Pirraglia, J.A. et al. (1981) Thermal structure and dynamics of the Jovian atmosphere. II—visible cloud features. J. Geophys. Res., 86, 8769– 8775. Cordero, S. (1993) Experiments on convection in a rotating hemispherical shell: transition to chaos. Geophys. Res. Lett., 20, 2587– 2590. Cordero, S. and Busse, F.H. (1992) Experiments on convection in rotating hemispherical shells: transition to a quasi-periodic state. Geophys. Res. Lett., 19, 733– 736. Coriolis, G.G. (1832) Memoire sur le principe des forces vives dans les mouvements relatifs des machines (On the principle of kinetic energy in the relative movement of machines). J. Ec. Polytech., 13, 268– 301. Coriolis, G.G. (1835) Memoire sur les equations du mouvement relatif des systémes de corps (On the equations of relative motion of a system of bodies). J. Ec. Polytech., 15, 142– 154. Cox, S.M. and Matthews, P.C. (2000) Instability of rotating convection. J. Fluid Mech., 403, 153– 172. Crnogorac, N., Wilke, H., Cliffe, K.A. et al. (2008) Numerical modelling of instability and supercritical oscillatory states in a Czochralski model system of oxide melts. Cryst. Res. Technol., 43 (6), 606– 615. Cross, M., Meiron, D. and Tu, Y. (1994) Chaotic domains: a numerical investigation. Chaos, 4 (4), 607– 619. Daniels, K.E., Bodenschatz, E., Pesch, W. and Brausch, O. (1999) Pattern formation in inclined layer convection. Bull. Am. Phys. Soc., CENT99, QC28.01. Daniels, K.E., Brausch, O., Pesch, W. and Bodenschatz, E. (2008) Competition and bistability of ordered undulations and undulation chaos in inclined layer convection. J. Fluid Mech., 597, 261– 282. Daniels, K.E., Plapp, B.B. and Bodenschatz, E. (2000) Pattern formation in inclined layer convection. Phys. Rev. Lett., 84, 5320– 5323. Danilov, S. and Gryanik, V.M. (2004) Barotropic beta-plane turbulence in a regime with strong zonal jets revisited. J. Atmos. Sci., 61 (18), 2283– 2295. Danilov, S. and Gurarie, D. (2001a) Nonuniversal features of forced twodimensional turbulence in the energy range. Phys. Rev. E, 63, 020203. Danilov, S. and Gurarie, D. (2001b) Forced two-dimensional turbulence in spectral and physical space. Phys. Rev. E, 63, 061208 (12 pp). Danilov, S. and Gurarie, D. (2002) Rhines scale and spectra of the β-plane turbulence with bottom drag. Phys. Rev. E, 65, 067301 (3 pp). Danilov, S. and Gurarie, D. (2004) Scaling, spectra and zonal jets in beta-plane turbulence. Phys. Fluids, 16 (7), 2592– 2603. Davey, M.K. and Killworth, P.D. (1984) Isolated waves and eddies in a shallow water model. J. Phys. Oceanogr., 14, 1047– 1064. Davidson, P.A. (1992) Swirling flow in an axisymmetric cavity of arbitrary profile, driven by a rotating magnetic field. J. Fluid Mech., 245, 669– 699. Davidson, P.A. and Hunt, J. (1987) Swirling recirculation flow in a liquid-metal column generated by a rotating magnetic field. J. Fluid Mech., 18, 67– 106. Davies, T.V. (1956) The forced flow due to heating of a rotating liquid. Philos. Trans. R. Soc. Lond. A, 249 (958), 27– 64. Davies, H.C. and Bishop, C.H. (1994) Eady edge waves and rapid development. J. Atmos. Sci., 51, 1930– 1946. Davis, C.A. and Emanuel, K.A. (1991) Potential vorticity diagnostics of cyclogenesis. Mon. Weather Rev., 119, 1930– 1953. Dawes, J.H.P. (2000) Pattern selection in oscillatory rotating convection. Physica D, 147, 336– 351. Dawes, J.H.P. (2001a) A Hopf/steady-state mode interaction in rotating convection: bursts and heteroclinic cycles in a square periodic domain. Physica D, 149, 197– 209. Dawes, J.H.P. (2001b) Rapidly rotating thermal convection at low Prandtl number. J. Fluid Mech., 428, 61– 80. Del Genio, A. D. and Suozzo, R. J. (1987) A comparative study of rapidly and slowly rotating dynamical regimes in a terrestrial general circulation model. J. Atmos. Sci., 44, 973– 986. Demay, Y., Iooss, G. and Laure, P. (1992) Wave patterns in the small gap Couette-Taylor problem. Eur. J. Mech. B, 11, 621– 634. Dickinson, R.E. (1969) Theory of planetary-wave zonal flow interaction. J. Atmos. Sci., 26, 73– 81. Dickson, R.R. (1989) Flow Statistics from Long-Term Current Meter Moorings, the Global Data Set in January 1989. Report WCP-30. World Climate Research Progress, World Meteorological Organization. Dijkstra, D. and van Heijst, G.J.F. (1983) The flow between finite rotating disks enclosed by a cylinder. J. Fluid Mech., 128, 123– 154. Dold, P. and Benz, K.W. (1997) Modification of fluid flow and heat transport in vertical bridgman configurations by rotating magnetic fields. Cryst. Res. Technol., 32 (1), 51– 60. Dold, P., Cröll, A., Lichtensteiger, M. et al. (2001) Floating zone growth of silicon in magnetic fields: IV: rotating magnetic fields. J. Cryst. Growth, 231, 95– 106. Dor" @default.
- W4211026276 created "2022-02-13" @default.
- W4211026276 date "2012-07-24" @default.
- W4211026276 modified "2023-09-27" @default.
- W4211026276 title "References" @default.
- W4211026276 cites W140686992 @default.
- W4211026276 cites W1498891724 @default.
- W4211026276 cites W1534587723 @default.
- W4211026276 cites W1562521416 @default.
- W4211026276 cites W1601723819 @default.
- W4211026276 cites W1607628911 @default.
- W4211026276 cites W1619418901 @default.
- W4211026276 cites W1621224861 @default.
- W4211026276 cites W1626041611 @default.
- W4211026276 cites W1640656132 @default.
- W4211026276 cites W1642851126 @default.
- W4211026276 cites W1647404955 @default.
- W4211026276 cites W1654291065 @default.
- W4211026276 cites W1670194505 @default.
- W4211026276 cites W1684696043 @default.
- W4211026276 cites W1767253932 @default.
- W4211026276 cites W187710741 @default.
- W4211026276 cites W1916321230 @default.
- W4211026276 cites W1963587598 @default.
- W4211026276 cites W1963603325 @default.
- W4211026276 cites W1963621117 @default.
- W4211026276 cites W1963794456 @default.
- W4211026276 cites W1963796851 @default.
- W4211026276 cites W1963827181 @default.
- W4211026276 cites W1963849313 @default.
- W4211026276 cites W1963893013 @default.
- W4211026276 cites W1964143402 @default.
- W4211026276 cites W1964349716 @default.
- W4211026276 cites W1964521679 @default.
- W4211026276 cites W1964605079 @default.
- W4211026276 cites W1964799215 @default.
- W4211026276 cites W1964944910 @default.
- W4211026276 cites W1965080487 @default.
- W4211026276 cites W1965171692 @default.
- W4211026276 cites W1965657439 @default.
- W4211026276 cites W1965740143 @default.
- W4211026276 cites W1965852978 @default.
- W4211026276 cites W1965872118 @default.
- W4211026276 cites W1965985023 @default.
- W4211026276 cites W1966213812 @default.
- W4211026276 cites W1966552387 @default.
- W4211026276 cites W1966600482 @default.
- W4211026276 cites W1966810318 @default.
- W4211026276 cites W1967075437 @default.
- W4211026276 cites W1968449401 @default.
- W4211026276 cites W1968723885 @default.
- W4211026276 cites W1968762673 @default.
- W4211026276 cites W1969175928 @default.
- W4211026276 cites W1969237530 @default.
- W4211026276 cites W1969361665 @default.
- W4211026276 cites W1969414012 @default.
- W4211026276 cites W1969724591 @default.
- W4211026276 cites W1970055801 @default.
- W4211026276 cites W1970288529 @default.
- W4211026276 cites W1970594191 @default.
- W4211026276 cites W1970786696 @default.
- W4211026276 cites W1971105564 @default.
- W4211026276 cites W1971138361 @default.
- W4211026276 cites W1971370715 @default.
- W4211026276 cites W1971442415 @default.
- W4211026276 cites W1971837680 @default.
- W4211026276 cites W1971860449 @default.
- W4211026276 cites W1972219399 @default.
- W4211026276 cites W1972296540 @default.
- W4211026276 cites W1972339295 @default.
- W4211026276 cites W1972700043 @default.
- W4211026276 cites W1972993296 @default.
- W4211026276 cites W1973006276 @default.
- W4211026276 cites W1973478475 @default.
- W4211026276 cites W1973503830 @default.
- W4211026276 cites W1973559471 @default.
- W4211026276 cites W1973581701 @default.
- W4211026276 cites W1973681010 @default.
- W4211026276 cites W1973705346 @default.
- W4211026276 cites W1973768002 @default.
- W4211026276 cites W1973920877 @default.
- W4211026276 cites W1974066495 @default.
- W4211026276 cites W1974667125 @default.
- W4211026276 cites W1974773531 @default.
- W4211026276 cites W1974998747 @default.
- W4211026276 cites W1975163426 @default.
- W4211026276 cites W1975325359 @default.
- W4211026276 cites W1975501812 @default.
- W4211026276 cites W1975582351 @default.
- W4211026276 cites W1975884437 @default.
- W4211026276 cites W1976369506 @default.
- W4211026276 cites W1976808997 @default.
- W4211026276 cites W1977561773 @default.
- W4211026276 cites W1977892125 @default.
- W4211026276 cites W1978241036 @default.
- W4211026276 cites W1978387497 @default.
- W4211026276 cites W1978548324 @default.
- W4211026276 cites W1978585261 @default.