Matches in SemOpenAlex for { <https://semopenalex.org/work/W4211026322> ?p ?o ?g. }
- W4211026322 endingPage "524" @default.
- W4211026322 startingPage "469" @default.
- W4211026322 abstract "Free Access Bibliography Mervyn J. Silvapulle, Mervyn J. Silvapulle La Trobe University, Bundoora, AustraliaSearch for more papers by this authorPranab K. Sen, Pranab K. Sen University of North Carolina, Chapel Hill, NCSearch for more papers by this author Book Author(s):Mervyn J. Silvapulle, Mervyn J. Silvapulle La Trobe University, Bundoora, AustraliaSearch for more papers by this authorPranab K. Sen, Pranab K. Sen University of North Carolina, Chapel Hill, NCSearch for more papers by this author First published: 29 October 2001 https://doi.org/10.1002/9781118165614.biblioBook Series:Wiley Series in Probability and Statistics AboutPDFPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShareShare a linkShare onFacebookTwitterLinked InRedditWechat Bibliography Aaberge, R. (1999). UMP unbiased tests for multiparameter testing problems with restricted alternatives. Metrika, 50, 179– 193. Abel, U. (1986). A nonparametric test against ordered alternatives for data defined by intervals. Statistica Neerlandica, 40, 87– 91. Abelson, R. B. and Tukey, J. W. (1963). Efficient utilization of non-numerical information in quantitative analysis: General theory and the case of simple order. Annals of Mathematical Statistics, 34, 1347– 1369. Adegboye, O. S. and Gupta, A. K. (1989). On testing against restricted alternatives for the variances of Gaussian models. The Australian Journal of Statistics, 31, 409– 415. Agresti, A. (1990). Categorical Data Analysis. John Wiley and Sons, New York. Agresti, A. (1999). Modelling ordered categorical data: Recent advances and future challenges. Statistics in Medicine, 18, 2191– 2207. Agresti, A. (2002). Categorical Data Analysis. John Wiley and Sons, New York. Agresti, A. and Chuang, C. (1986). Bayesian and maximum likelihood approaches to order restricted inference for models from categorical data. In Dykstra et al., editor, Advances in order restricted statistical inference, pages 6– 27. Springer-Verlag, New York. Agresti, A. and Coull, B. A. (1996). Order-restricted tests for stratified comparisons of binomial proportions. Biometrics, 52, 1103– 1111. Acknowledgment: This bibliography was prepared in part using the Current Index to Statistics (2002), by permission of the Current Index to Statistics Management Committee. Note: This bibliography contains mainly the publications during the past sixteen years; for references to earlier ones, see Robertson et al. (1988) and Barlow et al. (1972). Agresti, A. and Coull, B. A. (1998a). An empirical comparison of inference using order-restricted and linear logit models for a binary response. Communications in Statistics, Part B – Simulation and Computation, 27, 147– 166. Agresti, A. and Coull, B. A. (1998b). Order-restricted inference for monotone trend alternatives in contingency tables. Computational Statistics and Data Analysis, 28, 139– 155. Agresti, A. and Coull, B. A. (2002). The analysis of contingency tables under inequality constraints. Journal of Statistical Planning and Inference, 107(1–2), 45– 73. Agresti, A., Wackerly, D., and Boyett, J. M. (1979). Exact conditional tests for cross-classifications: Approximation of attained significance levels. Psychometrika, 44, 75– 84. Agresti, A., Chuang, C., and Kezouh, A. (1987). Order-restricted score parameters in association models for contingency tables. Journal of the American Statistical Association, 82, 619– 623. Ahmad, I. A. (1994). A class of statistics useful in testing increasing failure rate average and new better than used life distributions. Journal of Statistical Planning and Inference, 41, 141– 149. Ahmad, I. A. (2000). Testing exponentiality against positive ageing using Kernel methods. Sankhya, Series A, Indian Journal of Statistics, 62(2), 244– 257. Ahmad, I. A. (2001). Testing stochastic ordering in tails of distribution. Journal of Nonparametric Statistics, 13(6), 775– 790. Ahmad, I. A. and Kochar, S. C. (1990). Testing whether F is more IFR than G. Metrika, 37, 45– 58. Aitchison, J. and Silvey, S. D. (1958). Maximum likelihood estimation of parameters subject to restraints. Annals of Mathematical Statistics, 29, 813– 828. Akkerboom, J. C. (1990). Testing Problems with Linear or Angular Inequality Constraints. Springer-Verlag, New York. Al-Rawwash, H. M. (1990). On dominating the χ2-test in the case of multivariate normal distribution with one-sided alternatives. Sankhya, Series B, Indian Journal of Statistics, 52, 174– 182. Albert, J. H. (1994). A Bayesian approach to estimation of GPAs of University of Iowa freshmen under order restrictions. Journal of Educational Statistics, 19, 1– 21. Alvo, M. and Cabilio, P. (1995). Testing ordered alternatives in the presence of incomplete data. Journal of the American Statistical Association, 90, 1015– 1024. Aly, E.-E. A. A., Kochar, S. C., and McKeague, I. W. (1994). Some tests for comparing cumulative incidence functions and cause-specific hazard rates. Journal of the American Statistical Association, 89, 994– 999. Anderson, T. W. (1955). The integral of a symmetric unimodal function over a symmetric convex set and some probaility inequalities. Proceedings of the American Mathematical Society, 6, 170– 176. Anderson, T. W. (1984). An introduction to multivariate statistical analysis. John Wiley and Sons, New York. Andrews, D. W. K. (1998). Hypothesis testing with a restricted parameter space. Journal of Econometrics, 84, 155– 199. Andrews, D. W. K. (1999). Estimation when a parameter is on a boundary. Econometrica, 67, 1341– 1383. Andrews, D. W. K. (2000). Inconsistency of the bootstrap when a parameter is on the boundary of the parameter space. Econometrica, 68(2), 399– 405. Andrews, D. W. K. (2001). Testing when a parameter is on the boundary of the maintained hypothesis. Econometrica, 69(3), 683– 734. Anevski, D. and Anevski, O. H. (2002). Monotone regression and density function estimation at a point of discontinuity. Journal of Nonparametric Statistics, 14, 279– 294. Anraku, K. (1989). Approximately somewhere most powerful tests for marginal homogeneity of a square table under restricted alternatives. Behaviormetrika, Journal of the Behavior-metric Society of Japan, 25, 1– 13. Anraku, K. (1994). Estimation of odds ratios under order restrictions. Communications in Statistics, Part A – Theory and Methods, 23, 3257– 3272. Anraku, K. (1999). An information criterion for parameters under a simple order restriction. Biometrika, 86, 141– 152. Anraku, K., Nishi, A., and Yanagawa, T. (1988). Tests for the marginal probabilities in the two-way contingency table under restricted alternatives. Annals of the Institute of Statistical Mathematics, 40, 149– 163. Aras, G., Jammalamadaka, S. R., and Kafai, M. (1989). A rank test for stochastically ordered alternatives. Communications in Statistics, Part A – Theory and Methods, 18, 2263– 2277. Arcones, M. A. and Samaniego, F. J. (2000). On the asymptotic distribution theory of a class of consistent estimators of a distribution satisfying a uniform stochastic ordering constraint. Annals of Statistics, 28(1), 116– 150. Arcones, M. A., Kvam, P. H., and Samaniego, F. J. (2002). Nonparametric estimation of a distribution subject to a stochastic precedence constraint. Journal of the American Statistical Association, 97(457), 170– 182. Arjas, E. and Gasbarra, D. (1996). Bayesian inference of survival probabilities, under stochastic ordering constraints. Journal of the American Statistical Association, 91, 1101– 1109. Arnold, S. F. (1981). The theory of linear models and multivariate analysis. John Wiley and Sons, New York. Arnold, S. F. (1988). Union-intersection principle. In S. Kotz and N. L. Johnson, editors, Encyclopedia of Statistical Sciences (Vol. 1), pages 417– 420. John Wiley and Sons, New York. Avriel, M. (1976). Nonlinear Programming. Prentice-Hall, Englewood Cliffs, N.J. Bacchetti, P. (1989). Additive isotonic models. Journal of the American Statistical Association, 84, 289– 294. Bagai, I. and Rao, P. B. L. S. (1995). Kernel-type density and failure rate estimation for associated sequences. Annals of the Institute of Statistical Mathematics, 47, 253– 266. Bagai, I., Deshpandé, J. V., and Kochar, S. C. (1989). Distribution free tests for stochastic ordering in the competing risks model. Biometrika, 76, 775– 781. Bagui, S. C., Bhaumik, D. K., and Parnes, M. (1996). One-sided tolerance limits for unbalanced m-way random-effects ANOVA models. Journal of Applied Statistical Science, 3, 135– 147. Bandyopadhyay, D. and Basu, A. P. (1991). A class of tests for bivariate exponentiality against bivariate increasing failure rate alternatives. Journal of Statistical Planning and Inference, 29, 337– 349. Bandyopadhyay, U. and Chattopadhyay, G. (1992). Inverse sampling for bivariate non-parametric two-sample problems against restricted alternatives. Calcutta Statistical Association Bulletin, 42, 221– 236. Banerjee, M. and Wellner, J. A. (2001). Likelihood ratio tests for monotone functions. Annals of Statistics, 29(6), 1699– 1731. Bar-Lev, S. K. and Fygenson, M. (2000). Tests for exponentiality versus increasing failure rate alternatives. Far East Journal of Theoretical Statistics, 4(1), 73– 86. Baranchik, A. J. (1970). A family of minimax estimators of the mean of a multivariate normal distribution. Annals of Mathematical Statistics, 41, 642– 645. Barker, L., Rolka, H., Rolka, D., and Brown, C. (2001). Equivalence testing for binomial random variables: Which test to use? The American Statistician, 55(4), 279– 287. Barlow, R. E., Bartholomew, D. J., Bremner, J. M., and Brunk, H. D. (1972). Statistical Inference Under Order Restrictions. John Wiley and Sons, New York. Barnhart, H. X. and Sampson, A. R. (1995). Multiple population models for multivariate random length data – with applications in clinical trials. Biometrics, 51, 195– 204. Barrett, G. F. and Donald, S. G. (2003). Consistent tests for stochastic dominance. Econometrica, 71(1), 71– 104. Bartolucci, F. and Forcina, A. (2000). A likelihood ratio test for MTP2 within binary variables. Annals of Statistics, 28(4), 1206– 1218. Bartolucci, F., Forcina, A., and Dardanoni, V. (2001). Positive quadrant dependence and marginal modeling in two-way tables with ordered margins. Journal of the American Statistical Association, 96(456), 1497– 1505. Basawa, I. V. (1985). Neyman-Lecam testsbased on estimating functions. In L. M. LeCam and R. A. Olshen, editors, Proceedings of the Berkeley Conference in Honour of Jerzey Neyman and Jack Keifer, volume II, pages 811– 825. Institute of Mathematical Statistics, Hayward, CA. Basu, A. P. and Habibullah, M. (1987). A test for bivariate exponentiality against BIFRA alternative. Calcutta Statistical Association Bulletin, 36, 79– 84. Bauer, P. (1997). A note on multiple testing procedures in dose finding. Biometrics, 53, 1125– 1128. Bauer, P. and Budde, M. (1994). Multiple testing for detecting efficient dose steps. Biometrical Journal, 36, 3– 15. Bauer, P., Hackl, P., Hommel, G., and Sonnemann, E. (1986). Multiple testing of pairs of one-sided hypotheses. Metrika, 33, 121– 127. Bazaraa, M. S., Sherali, H. D., and Shetty, C. M. (1993). Nonlinear Programming: Theory and Algorithms. Springer-Verlag, Berlin. Beg, A. B. M. R. A., Silvapulle, M. J., and Silvapulle, P. (2001). Tests against inequality constraints when some nuisance parameters are present only under the alternative: Test of ARCH in ARCH-M models. Journal of Business and Economic Statistics, 19(2), 245– 253. Beier, F. and Büning, H. (1997). An adaptive test against ordered alternatives. Computational Statistics and Data Analysis, 25, 441– 452. Bellout, D. (1989). Order restricted estimation of distributions with censored data. Journal of Statistical Planning and Inference, 21, 27– 39. Belzunce, F., Candel, J., and Ruiz, J. M. (1998). Testing the stochastic order and the IFR, DFR, NBU, NWU ageing classes. IEEE Transactions on Reliability, 47, 285– 296. Benjamini, Y. and Hochberg, Y. (1995). Controlling the false discovery rate: A practical and powerful approach to multiple testing. Journal of the Royal Statistical Society, Series B, Methodological, 57, 289– 300. Benjamini, Y. and Hochberg, Y. (1997). Multiple hypothesis testing with weights. Scandinavian Journal of Statistics, 24, 407– 418. Benjamini, Y. and Hochberg, Y. (1999). More on simes' test. Department of Statistics and OR, Tel Aviv University. Benjamini, Y. and Hochberg, Y. (2000). Adaptive control of false discovery rate in multiple hypothesis testing. Jour. Behav. Educ. Statist., 25, 60– 83. Benjamini, Y. and Liu, W. (1999). A step-down multiple hypotheses testing procedure that controls the false discovery rate under independence. Journal of Statistical Planning and Inference, 82, 163– 170. Benjamini, Y. and Yekutieli, D. (2001). The control of the false discovery rate in multiple testing under dependency. Annals of Statistics, 29(4), 1165– 1188. Beran, R. and Dümbgen, L. (1998). Modulation of estimators and confidence sets. Annals of Statistics, 26(5), 1826– 1856. Berger, J. O. (1985). Statistical Decision Theory and Bayesian Analysis. Springer-Verlag, New York. Berger, R. L. (1982). Multiparameter hypothesis testing and acceptance sampling. Technometrics, 24, 295– 300. Berger, R. L. (1984a). Testing for the same ordering in several groups of means. In Design of experiments: ranking and selection: essays in honor of Robert E. Bechhofer, pages 241– 249. Berger, R. L. (1984b). Testing whether one regression function is larger than another. Communications in Statistics, Part A - Theory and Methods, 13, 1793– 1810. Berger, R. L. (1988). A nonparametric, intersection-union test for stochastic order. In Statistical decision theory and related topics IV, Volume 2, pages 253– 264. Springer-Verlag, New York. Berger, R. L. (1989). Uniformly more powerful tests for hypotheses concerning linear inequalities and normal means. Journal of the American Statistical Association, 84, 192– 199. Berger, R. L. (1997). Likelihood ratio tests and intersection union tests. In S. Panchapakesan and N. Balakrishnan, editors, Advances in Statistical Decision Theory and Applications, pages 225– 237. Birkhäuser, Boston. Berger, R. L. and Boos, D. D. (1994). P values maximized over a confidence set for the nuisance parameter. Journal of the American Statistical Association, 89, 1012– 1016. Berger, R. L. and Hsu, J. C. (1996). Bioequivalence trials, intersection-union tests and equivalence confidence sets (Disc: p303–319). Statistical Science, 11, 283– 302. Berger, R. L. and Sinclair, D. F. (1984). Testing hypotheses concerning unions of linear subspaces. Journal of the American Statistical Association, 79, 158– 163. Berger, V. and Sackrowitz, H. (1997). Improving tests for superior treatment in contingency tables. Journal of the American Statistical Association, 92, 700– 705. Berger, V. W., Permutt, T., and Ivanova, A. (1998). Convex hull test for ordered categorical data. Biometrics, 54, 1541– 1550. Berk, R. and Marcus, R. (1996). Dual cones, dual norms, and simultaneous inference for partially ordered means. Journal of the American Statistical Association, 91, 318– 328. Bhattacharjee, M. C. and Sen, P. K. (1995). Analysis of censored data, volume 27 of IMS Lecture Monograph Series, chapter On Kolmogorov-Smirnov type tests for NB(W)UE alternates under censoring schemes, pages 25– 38. Bhattacharjee, M. C. and Sen, P. K. (1997). TTT-transform characterization of the NBRUE property and tests for exponentiality. In Frontiers in Reliability, (Ed: A. P. Basu et al.), pages 71– 82. World Science Press, London. Bhattacharjee, M. C. and Sen, P. K. (1998). TTT-transformation characterization of the NBRUE property and tests for exponentiality. In A. P. Basu et al., editor, Frontiers in Reliability, pages 71– 81. World Science Publications, London. Bhattacharya, B. (1995). Restricted tests for and against the increasing failure rate ordering on multinomial parameters. Statistics and Probability Letters, 25, 309– 316. Bhattacharya, B. (1996). Tests of bivariate symmetry with a one-sided alternative in the analysis of variance. Biometrical Journal, 38, 791– 808. Bhattacharya, B. (1997a). On testing diagonal homogeneity with a one-sided alternative in the analysis of variance. Sankhya, Series A, Indian Journal of Statistics, 59, 198– 214. Bhattacharya, B. (1997b). On tests of symmetry against one-sided alternatives. Annals of the Institute of Statistical Mathematics, 49, 237– 254. Bhattacharya, B. (1997c). Testing multinomial parameters under order restrictions. Communications in Statistics, Part A - Theory and Methods, 26, 1839– 1865. Bhattacharya, B. (1998). Testing conditional symmetry against one-sided alternatives in square contingency tables. Metrika, 47, 71– 84. Bhattacharya, B. and Nandram, B. (1996). Bayesian inference for multinomial populations under stochastic ordering. Journal of Statistical Computation and Simulation, 54, 145– 163. Bhattacharya, G. K. and Johnson, R. A. (1970). Aayer rank test for ordred bivariate altrnative. Annals of Mathematical Statistics, 41, 1296– 1310. Bhaumik, D. K. and Kulkarni, P. M. (1991). One-sided tolerance limits for unbalanced oneway ANOVA random effects model. Communications in Statistics, Part A - Theory and Methods, 20, 1665– 1675. Bickel, P. J. and Doksum, K. (1977). Mathematical Statistics. Holden-Day, San Francisco, CA. Birgé, L. (1987a). Estimating a density under order restrictions: Nonasymptotic minimax risk. Annals of Statistics, 15, 995– 1012. Birgé, L. (1987b). On the risk of histograms for estimating decreasing densities. Annals of Statistics, 15, 1013– 1022. Birgé, L. (1997). Estimation of unimodal densities without smoothness assumptions. Annals of Statistics, 25, 970– 981. Black, S. and Mansouri, H. (1995). On exact distributions of rank tests for ordered alternatives in block designs. Computational Statistics and Data Analysis, 20, 265– 274. Blair, R. C., Troendle, J. F., and Beck, R. W. (1996). Control of familywise errors in multiple endpoint assessments via stepwise permutation tests. Statistics in Medicine, 15, 1107– 1121. Bloch, D. A., Lai, T. L., and Tubert-Bitter, P. (2001). One-sided tests in clinical trials with multiple endpoints. Biometrics, 57(4), 1039– 1047. Block, H. W., Qian, S., and Sampson, A. R. (1996). Isotonic regression on permutations. In Distributions with fixed marginals and related topics, pages 45– 64. Bofinger, E. (1992). Expanded confidence intervals, one-sided tests, and equivalence testing. Journal of Biopharmaceutical Statistics, 2, 181– 188. Bohrer, R. and Chow, W. (1978). Weights for one-sided multivariate inference. Applied Statistics, 27, 100– 104. Boyd, M. N. and Sen, P. K. (1983). Union-intersection rank tests for ordered alternatives in some simple linear models. Communications in Statistics, Part A - Theory and Methods, 12, 1737– 1753. Boyd, M. N. and Sen, P. K. (1984). Union-intersection rank tests for ordered alternatives in a complete block design. Communications in Statistics, Part A - Theory and Methods, 13, 285– 303. Boyd, M. N. and Sen, P. K. (1986). Union-intersection rank tests for ordered alternatives in ANOCOVA. Journal of the American Statistical Association, 81, 526– 532. Boyer, J. E. J. (1990). Ordered alternatives: A means of improving power. In Proceedings of the 1990 Kansas State University Conference on Applied Statistics in Agriculture, pages 196– 205. Boyles, R. A., Marshall, A. W., and Proschan, F. (1985). Inconsistency of the maximum likelihood estimator of a distribution having increasing failure rate average. Annals of Statistics, 13, 413– 417. Bregenzer, T. and Lehmacher, W. (1998). Directional tests for the analysis of clinical trials with multiple endpoints allowing for incomplete data. Biometrical Journal, 40, 911– 928. Bremner, J. M. (1993). A new approach to subset selection for normal means. Journal of Statistical Computation and Simulation, 44, 187– 208. Bretz, F. and Hothorn, L. A. (2000). A powerful alternative to Williams' test with application to toxicological dose-response relationships of normally distributed data. Environmental and Ecological Statistics, 7(2), 135– 154. Bricker, D. L., Kortanek, K. O., and Xu, L. (1997). Maximum likelihood estimates with order restrictions on probabilities and odds ratios: A geometric programming approach. Journal of Applied Mathematics and Decision Sciences, 1, 53– 65. Bristol, D. R. (1992). One-sided multiple comparisons of response rates with a control. In F. M. Hoppe, editor, Multiple Comparisons, Selection, and Applications in Biometry. A Festschrift in Honor of Charles W. Dunnett, pages 77– 96. Marcel Dekker, New York. Bristol, D. R. (1993). Probabilities and sample sizes for the two one-sided tests procedure. Communications in Statistics, Part A - Theory and Methods, 22, 1953– 1961. Bryant, J. and Day, R. (1995). Incorporating toxicity considerations into the design of two-stage phase II clinical trials. Biometrics, 51, 1372– 1383. Budde, M. and Bauer, P. (1989). Multiple test procedures in clinical dose finding studies. Journal of the American Statistical Association, 84, 792– 796. Büning, H. (1999). Adaptive Jonckheere-type tests for ordered alternatives. Journal of Applied Statistics, 26, 541– 551. Büning, H. and Kössler, W. (1996). Robustness and efficiency of some tests for ordered alternatives in the c-sample location problem. Journal of Statistical Computation and Simulation, 55, 337– 352. Büning, H. and Kössler, W. (1999). The asymptotic power of Jonckheere-type tests for ordered alternatives. The Australian and New Zealand Journal of Statistics, 41, 67– 77. Calvin, J. A. (1994). One-sided test of a covariance matrix with a known null value. Communications in Statistics, Part A - Theory and Methods, 23, 3121– 3140. Calvin, J. A. and Dykstra, R. L. (1991). Maximum likelihood estimation of a set of covariance matrices under Löwner order restrictions with applications to balanced multivariate variance components models. Annals of Statistics, 19, 850– 869. Calvin, J. A. and Dykstra, R. L. (1995). REML estimation of covariance matrices with restricted parameter spaces. Journal of the American Statistical Association, 90, 321– 329. Capizzi, T., Survill, T. T., Heyse, J. F., and Malani, H. (1992). An empirical and simulated comparison of some tests for detecting progressiveness of response with increasing doses of a compound. Biometrical Journal, 34, 275– 289. Cardoso-Neto, J. and Paula, G. A. (2001). Wald one-sided test using generalized estimating equation. Computational Data Analysis, 36, 475– 495. Carolan, C. and Dykstra, R. (1999). Asymptotic behavior of the Grenander estimator at density flat regions. The Canadian Journal of Statistics, 27, 557– 566. Carolan, C. and Dykstra, R. (2001). Marginal densities of the least concave majorant of Brownian motion. Annals of Statistics, 29(6), 1732– 1750. Carriere, K. C. and Kochar, S. C. (2000). Comparing sub-survival functions in a competing risks model. Lifetime Data Analysis, 6(1), 85– 97. Casella, G. and Berger, R. L. (2002). Statistical Inference. Thomson Learning, Pacific Grove, CA. Castillo, E., Hadi, A. S., Lacruz, B., and Sarabia, J. M. (2002). Constrained mixture distributions. Metrika, 55(3), 247– 269. Ceesay, P., Sarkar, S. K., and Snapinn, S. (1997). Assessing the superiority of a combination drug from a Bayesian perspective. In ASA Proceedings of the Biopharmaceutical Section, pages 263– 271. American Statistical Association, Alexandria, VA. Chacko, V. J. (1963). Testing homogeneity against ordered alternatives. Annals of Mathematical Statistics, 34, 945– 956. Chacko, V. J. (1966). Modified chi-square test for ordered alternatives. Sankhya, Series B, Indian Journal of Statistics, 28, 185– 190. Chakraborti, S. (1990). A one-sided test of homogeneity against simple tree alternative for right-censored data. Communications in Statistics, Part B - Simulation and Computation, 19, 879– 889. Chakraborti, S. and Desu, M. M. (1988). A class of distribution-free tests for testing homogeneity against ordered alternatives. Statistics and Probability Letters, 6, 251– 256. Chakraborti, S. and Gibbons, J. D. (1992). One-sided nonparametric comparison of treatments with a standard for unequal sample sizes. Journal of Experimental Education, 60, 235– 242. Chakraborti, S. and Hettmansperger, T. P. (1996). Multi-sample inference for the simple-tree alternative based on one-sample confidence intervals. Communications in Statistics, Part A – Theory and Methods, 25, 2819– 2837. Chakraborti, S. and Sen, P. K. (1992). Order restricted quantile tests under unequal right-censorship. Sankhya, Series B, Indian Journal of Statistics, 54, 150– 164. Chang, M. N. (1996). On the asymptotic distribution of an isotonic window estimator for the generalized failure rate function. Communications in Statistics, Part A – Theory and Methods, 25, 2239– 2249. Chang, M. N. and Chung, D. (1998). Isotonic window estimators of the baseline hazard function in cox's regression model under order restriction. Scandinavian Journal of Statististics, 25, 151– 161. Chang, Y. T. (1981). Stein-type estimators for parameters restricted by linear inequalities. Keito Science Technical Report, 34, 83– 95. Chang, Y. T. (1982). Stein-type estimators for parameters in truncated spaces. Keito Science Technical Report, 35, 185– 193. Chant, D. (1974). On asymptotic tests of complete hypotheses in nonstandard conditions. Biometrika, 61, 291– 298. Charnes, A., Cooper, W. W., and Tyssedal, J. (1983). Khincin-Kullback-Leibler estimation with inequality constraints. Mathematische Operationsforschung und Statistik, Series Operations Research, 14, 377– 380. Chatterjee, S. K. (1962). Sequential inference procedures of Stein's type for a class of multivariate regression problems. Annals of Mathematical Statistics, 33, 1039– 1064. Chatterjee, S. K. (1984). Restricted alternatives. In P.R. Krishnaiah and P.K. Sen, editor, Handbook of Statistics (Vol. 4): Nonparametric Methods, pages 327– 345. North-Holland, New York. Chatterjee, S. K. and Sen, P. K. (1964). Nonparametric tests for the bivariate two-sample location problem. Calcatta Statistical Association Bulletin, 13, 18– 58. Chaubey, Y. and Sen, P. K. (2002a). Smooth estimation of multivariate survival and density function. Journal of Statistical Planning and Inference, 102, 349– 358. Chaubey, Y. and Sen, P. K. (2003). Tail-behaviour of survival functions. Journal of Statistical Planning and Inference, 90, 223– 232. Chaubey, Y. P. and Sen, P. K. (1996). On smooth estimation of survival and density functions. Statistics and Decisions, 14, 1– 22. Chaubey, Y. P. and Sen, P. K. (1997). On smooth estimation of hazard and cumulative hazard functions. In S. P. Mukherjee et al., editor, Frontiers in Probability and Statistics, pages 92– 100. Narosa, New Delhi. Chaubey, Y. P. and Sen, P. K. (1999). On smooth estimation of mean residual life. Journal of Statistical Planning and Inference, 75, 223– 236. Chaubey, Y. P. and Sen, P. K. (2002b). Smooth isotonic" @default.
- W4211026322 created "2022-02-13" @default.
- W4211026322 date "2001-10-29" @default.
- W4211026322 modified "2023-10-14" @default.
- W4211026322 title "Bibliography" @default.
- W4211026322 cites W114428741 @default.
- W4211026322 cites W146953956 @default.
- W4211026322 cites W1479739724 @default.
- W4211026322 cites W1485365027 @default.
- W4211026322 cites W1494436834 @default.
- W4211026322 cites W1496899399 @default.
- W4211026322 cites W1496983321 @default.
- W4211026322 cites W1503951590 @default.
- W4211026322 cites W1506217076 @default.
- W4211026322 cites W1517817867 @default.
- W4211026322 cites W1520725687 @default.
- W4211026322 cites W1523668590 @default.
- W4211026322 cites W1529503733 @default.
- W4211026322 cites W1531280538 @default.
- W4211026322 cites W1533206167 @default.
- W4211026322 cites W1533658490 @default.
- W4211026322 cites W1535733413 @default.
- W4211026322 cites W1536484404 @default.
- W4211026322 cites W1537192229 @default.
- W4211026322 cites W1554917663 @default.
- W4211026322 cites W1559853761 @default.
- W4211026322 cites W1561794630 @default.
- W4211026322 cites W1568836790 @default.
- W4211026322 cites W1569363137 @default.
- W4211026322 cites W1585282117 @default.
- W4211026322 cites W1593847661 @default.
- W4211026322 cites W1596515083 @default.
- W4211026322 cites W179008181 @default.
- W4211026322 cites W192152683 @default.
- W4211026322 cites W1932216074 @default.
- W4211026322 cites W1963547988 @default.
- W4211026322 cites W1963569987 @default.
- W4211026322 cites W1963839027 @default.
- W4211026322 cites W1964208331 @default.
- W4211026322 cites W1964213467 @default.
- W4211026322 cites W1964386540 @default.
- W4211026322 cites W1964848784 @default.
- W4211026322 cites W1965239464 @default.
- W4211026322 cites W1966489345 @default.
- W4211026322 cites W1966587813 @default.
- W4211026322 cites W1966638913 @default.
- W4211026322 cites W1966666962 @default.
- W4211026322 cites W1966698631 @default.
- W4211026322 cites W1966770772 @default.
- W4211026322 cites W1966900142 @default.
- W4211026322 cites W1967072731 @default.
- W4211026322 cites W1967265600 @default.
- W4211026322 cites W1967384031 @default.
- W4211026322 cites W1967425904 @default.
- W4211026322 cites W1967634500 @default.
- W4211026322 cites W1967819287 @default.
- W4211026322 cites W1968003233 @default.
- W4211026322 cites W1968119343 @default.
- W4211026322 cites W1968248886 @default.
- W4211026322 cites W1968422795 @default.
- W4211026322 cites W1968973014 @default.
- W4211026322 cites W1969164744 @default.
- W4211026322 cites W1970065313 @default.
- W4211026322 cites W1970344583 @default.
- W4211026322 cites W1970364790 @default.
- W4211026322 cites W1970985964 @default.
- W4211026322 cites W1971127488 @default.
- W4211026322 cites W1971370175 @default.
- W4211026322 cites W1971713783 @default.
- W4211026322 cites W1972924433 @default.
- W4211026322 cites W1973240875 @default.
- W4211026322 cites W1973665040 @default.
- W4211026322 cites W1973893297 @default.
- W4211026322 cites W1973914895 @default.
- W4211026322 cites W1974053837 @default.
- W4211026322 cites W1974774059 @default.
- W4211026322 cites W1975003114 @default.
- W4211026322 cites W1975049860 @default.
- W4211026322 cites W1975234827 @default.
- W4211026322 cites W1975263298 @default.
- W4211026322 cites W1975317051 @default.
- W4211026322 cites W1975320114 @default.
- W4211026322 cites W1975728102 @default.
- W4211026322 cites W1976643726 @default.
- W4211026322 cites W1976867656 @default.
- W4211026322 cites W1977003570 @default.
- W4211026322 cites W1977099476 @default.
- W4211026322 cites W1977350532 @default.
- W4211026322 cites W1977410139 @default.
- W4211026322 cites W1977801932 @default.
- W4211026322 cites W1977867133 @default.
- W4211026322 cites W1978272016 @default.
- W4211026322 cites W1978367638 @default.
- W4211026322 cites W1978746706 @default.
- W4211026322 cites W1978842303 @default.
- W4211026322 cites W1978979211 @default.
- W4211026322 cites W1979008327 @default.
- W4211026322 cites W1979029983 @default.