Matches in SemOpenAlex for { <https://semopenalex.org/work/W4211036107> ?p ?o ?g. }
- W4211036107 endingPage "593" @default.
- W4211036107 startingPage "581" @default.
- W4211036107 abstract "Low-field (nuclear magnetic resonance) NMR has been widely used in petroleum industry, such as well logging and laboratory rock core analysis. However, the signal-to-noise ratio is low due to the low magnetic field strength of NMR tools and the complex petrophysical properties of detected samples. Suppressing the noise and highlighting the available NMR signals is very important for subsequent data processing. Most denoising methods are normally based on fixed mathematical transformation or hand-design feature selectors to suppress noise characteristics, which may not perform well because of their non-adaptive performance to different noisy signals. In this paper, we proposed a “data processing framework” to improve the quality of low field NMR echo data based on dictionary learning. Dictionary learning is a machine learning method based on redundancy and sparse representation theory. Available information in noisy NMR echo data can be adaptively extracted and reconstructed by dictionary learning. The advantages and application effectiveness of the proposed method were verified with a number of numerical simulations, NMR core data analyses, and NMR logging data processing. The results show that dictionary learning can significantly improve the quality of NMR echo data with high noise level and effectively improve the accuracy and reliability of inversion results." @default.
- W4211036107 created "2022-02-13" @default.
- W4211036107 creator A5035883417 @default.
- W4211036107 creator A5056943221 @default.
- W4211036107 creator A5072269410 @default.
- W4211036107 creator A5075729645 @default.
- W4211036107 creator A5081090704 @default.
- W4211036107 creator A5085061201 @default.
- W4211036107 creator A5088386438 @default.
- W4211036107 date "2022-04-01" @default.
- W4211036107 modified "2023-10-14" @default.
- W4211036107 title "A machine learning framework for low-field NMR data processing" @default.
- W4211036107 cites W1890834058 @default.
- W4211036107 cites W1967614006 @default.
- W4211036107 cites W1981596913 @default.
- W4211036107 cites W1992819328 @default.
- W4211036107 cites W1995164755 @default.
- W4211036107 cites W2002522659 @default.
- W4211036107 cites W2004712789 @default.
- W4211036107 cites W2007793693 @default.
- W4211036107 cites W2016572604 @default.
- W4211036107 cites W2017312701 @default.
- W4211036107 cites W2029869960 @default.
- W4211036107 cites W2053275644 @default.
- W4211036107 cites W2063720795 @default.
- W4211036107 cites W2070255659 @default.
- W4211036107 cites W2076283593 @default.
- W4211036107 cites W2078204800 @default.
- W4211036107 cites W2105615443 @default.
- W4211036107 cites W2152328854 @default.
- W4211036107 cites W2153663612 @default.
- W4211036107 cites W2160547390 @default.
- W4211036107 cites W2212746534 @default.
- W4211036107 cites W2302460457 @default.
- W4211036107 cites W2395530860 @default.
- W4211036107 cites W2607103028 @default.
- W4211036107 cites W2607444538 @default.
- W4211036107 cites W2800376224 @default.
- W4211036107 cites W2901759954 @default.
- W4211036107 cites W2921970083 @default.
- W4211036107 cites W2934901037 @default.
- W4211036107 cites W2938586358 @default.
- W4211036107 cites W2958778335 @default.
- W4211036107 cites W3022300976 @default.
- W4211036107 cites W3092638027 @default.
- W4211036107 cites W3127851831 @default.
- W4211036107 cites W3133781680 @default.
- W4211036107 cites W3180046493 @default.
- W4211036107 doi "https://doi.org/10.1016/j.petsci.2022.02.001" @default.
- W4211036107 hasPublicationYear "2022" @default.
- W4211036107 type Work @default.
- W4211036107 citedByCount "10" @default.
- W4211036107 countsByYear W42110361072022 @default.
- W4211036107 countsByYear W42110361072023 @default.
- W4211036107 crossrefType "journal-article" @default.
- W4211036107 hasAuthorship W4211036107A5035883417 @default.
- W4211036107 hasAuthorship W4211036107A5056943221 @default.
- W4211036107 hasAuthorship W4211036107A5072269410 @default.
- W4211036107 hasAuthorship W4211036107A5075729645 @default.
- W4211036107 hasAuthorship W4211036107A5081090704 @default.
- W4211036107 hasAuthorship W4211036107A5085061201 @default.
- W4211036107 hasAuthorship W4211036107A5088386438 @default.
- W4211036107 hasBestOaLocation W42110361071 @default.
- W4211036107 hasConcept C104267543 @default.
- W4211036107 hasConcept C111919701 @default.
- W4211036107 hasConcept C115961682 @default.
- W4211036107 hasConcept C119857082 @default.
- W4211036107 hasConcept C124101348 @default.
- W4211036107 hasConcept C127413603 @default.
- W4211036107 hasConcept C138827492 @default.
- W4211036107 hasConcept C152124472 @default.
- W4211036107 hasConcept C153180895 @default.
- W4211036107 hasConcept C154945302 @default.
- W4211036107 hasConcept C163294075 @default.
- W4211036107 hasConcept C187320778 @default.
- W4211036107 hasConcept C202444582 @default.
- W4211036107 hasConcept C33923547 @default.
- W4211036107 hasConcept C41008148 @default.
- W4211036107 hasConcept C46293882 @default.
- W4211036107 hasConcept C6648577 @default.
- W4211036107 hasConcept C84462506 @default.
- W4211036107 hasConcept C9390403 @default.
- W4211036107 hasConcept C9652623 @default.
- W4211036107 hasConcept C99498987 @default.
- W4211036107 hasConceptScore W4211036107C104267543 @default.
- W4211036107 hasConceptScore W4211036107C111919701 @default.
- W4211036107 hasConceptScore W4211036107C115961682 @default.
- W4211036107 hasConceptScore W4211036107C119857082 @default.
- W4211036107 hasConceptScore W4211036107C124101348 @default.
- W4211036107 hasConceptScore W4211036107C127413603 @default.
- W4211036107 hasConceptScore W4211036107C138827492 @default.
- W4211036107 hasConceptScore W4211036107C152124472 @default.
- W4211036107 hasConceptScore W4211036107C153180895 @default.
- W4211036107 hasConceptScore W4211036107C154945302 @default.
- W4211036107 hasConceptScore W4211036107C163294075 @default.
- W4211036107 hasConceptScore W4211036107C187320778 @default.
- W4211036107 hasConceptScore W4211036107C202444582 @default.
- W4211036107 hasConceptScore W4211036107C33923547 @default.