Matches in SemOpenAlex for { <https://semopenalex.org/work/W4211045541> ?p ?o ?g. }
- W4211045541 endingPage "1310" @default.
- W4211045541 startingPage "1310" @default.
- W4211045541 abstract "Motors are the main driving power for equipment operation, and they are also a major factor to promote the development of the motor and the load it drives and its motor control system toward a low-carbon future, reduce carbon emissions, and improve the industrial economy and social economic efficiency. Due to high-speed, long-period, and heavy-load operation, various faults occur; since the existing integer-order Fourier transform methods have not enough able to detect fractional-order faults and lack robustness, it is difficult to realize the fine diagnosis of motor faults, which reduces the safety and reliability of the motor control system. For this reason, on the basis of the powerful extraction ability of the fractional Fourier transform (FRFT) for micro fault features, especially the extraction ability to fit fractional frequency domain faults, this paper intends to establish a multilevel fine fault diagnosis method for fractional-order or integer-order faults. Firstly, this is accomplished by performing the fractional Fourier transform on the acquired data with faults and feature extraction in the multilevel fractional frequency domain and then optimizing the feature extraction model. Secondly, one further step search method is established to determine the projection direction with the largest fault feature. Thirdly, taking the extracted multilevel fault features as input, a multilevel fine fault diagnosis method based on the SVM model is established. Finally, three typical digital simulation examples and actual operating data collected by the ZHS-2 multifunctional motor test bench with a flexible rotor are employed to verify the effectiveness, robustness, and accuracy of this new method. The main contribution and innovation of this paper are that the fractional Fourier transform method based on time domain and frequency domains is introduced. This method can extract the small fault features in the maximum projection direction of the signal in the fractional domain, but detection with other time-frequency methods is difficult; the extracted multilevel fault features are used as input, and the corresponding fault diagnosis model is established, which can improve the accuracy of fault detection and ensure the safe and reliable operation of industrial equipment." @default.
- W4211045541 created "2022-02-13" @default.
- W4211045541 creator A5023857321 @default.
- W4211045541 creator A5057964582 @default.
- W4211045541 creator A5086718724 @default.
- W4211045541 date "2022-02-09" @default.
- W4211045541 modified "2023-10-13" @default.
- W4211045541 title "Multilevel Fine Fault Diagnosis Method for Motors Based on Feature Extraction of Fractional Fourier Transform" @default.
- W4211045541 cites W2019928639 @default.
- W4211045541 cites W2033082431 @default.
- W4211045541 cites W2042031583 @default.
- W4211045541 cites W2074425587 @default.
- W4211045541 cites W2099006587 @default.
- W4211045541 cites W2107074288 @default.
- W4211045541 cites W2145576488 @default.
- W4211045541 cites W2184192902 @default.
- W4211045541 cites W2261548087 @default.
- W4211045541 cites W2276849853 @default.
- W4211045541 cites W2324336313 @default.
- W4211045541 cites W2335264885 @default.
- W4211045541 cites W2584551907 @default.
- W4211045541 cites W2615682953 @default.
- W4211045541 cites W2784286678 @default.
- W4211045541 cites W2785740513 @default.
- W4211045541 cites W2875961142 @default.
- W4211045541 cites W2894413670 @default.
- W4211045541 cites W2941859556 @default.
- W4211045541 cites W2952975079 @default.
- W4211045541 cites W2953275266 @default.
- W4211045541 cites W2990027271 @default.
- W4211045541 cites W2990981085 @default.
- W4211045541 cites W2994455592 @default.
- W4211045541 cites W3004287684 @default.
- W4211045541 cites W3008036189 @default.
- W4211045541 cites W3027737133 @default.
- W4211045541 cites W3041236601 @default.
- W4211045541 cites W3091072475 @default.
- W4211045541 cites W3135234437 @default.
- W4211045541 cites W3135855722 @default.
- W4211045541 cites W3139414872 @default.
- W4211045541 cites W3172371930 @default.
- W4211045541 cites W3194131586 @default.
- W4211045541 cites W3196962087 @default.
- W4211045541 cites W3211045837 @default.
- W4211045541 cites W4200264590 @default.
- W4211045541 cites W4205341374 @default.
- W4211045541 cites W4210691109 @default.
- W4211045541 cites W4246487360 @default.
- W4211045541 doi "https://doi.org/10.3390/s22041310" @default.
- W4211045541 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35214210" @default.
- W4211045541 hasPublicationYear "2022" @default.
- W4211045541 type Work @default.
- W4211045541 citedByCount "3" @default.
- W4211045541 countsByYear W42110455412022 @default.
- W4211045541 countsByYear W42110455412023 @default.
- W4211045541 crossrefType "journal-article" @default.
- W4211045541 hasAuthorship W4211045541A5023857321 @default.
- W4211045541 hasAuthorship W4211045541A5057964582 @default.
- W4211045541 hasAuthorship W4211045541A5086718724 @default.
- W4211045541 hasBestOaLocation W42110455411 @default.
- W4211045541 hasConcept C102519508 @default.
- W4211045541 hasConcept C104317684 @default.
- W4211045541 hasConcept C11413529 @default.
- W4211045541 hasConcept C127313418 @default.
- W4211045541 hasConcept C127413603 @default.
- W4211045541 hasConcept C134306372 @default.
- W4211045541 hasConcept C154945302 @default.
- W4211045541 hasConcept C165205528 @default.
- W4211045541 hasConcept C175551986 @default.
- W4211045541 hasConcept C185592680 @default.
- W4211045541 hasConcept C19118579 @default.
- W4211045541 hasConcept C203024314 @default.
- W4211045541 hasConcept C2775924081 @default.
- W4211045541 hasConcept C31972630 @default.
- W4211045541 hasConcept C33923547 @default.
- W4211045541 hasConcept C41008148 @default.
- W4211045541 hasConcept C47446073 @default.
- W4211045541 hasConcept C52622490 @default.
- W4211045541 hasConcept C55493867 @default.
- W4211045541 hasConcept C63479239 @default.
- W4211045541 hasConcept C76563020 @default.
- W4211045541 hasConceptScore W4211045541C102519508 @default.
- W4211045541 hasConceptScore W4211045541C104317684 @default.
- W4211045541 hasConceptScore W4211045541C11413529 @default.
- W4211045541 hasConceptScore W4211045541C127313418 @default.
- W4211045541 hasConceptScore W4211045541C127413603 @default.
- W4211045541 hasConceptScore W4211045541C134306372 @default.
- W4211045541 hasConceptScore W4211045541C154945302 @default.
- W4211045541 hasConceptScore W4211045541C165205528 @default.
- W4211045541 hasConceptScore W4211045541C175551986 @default.
- W4211045541 hasConceptScore W4211045541C185592680 @default.
- W4211045541 hasConceptScore W4211045541C19118579 @default.
- W4211045541 hasConceptScore W4211045541C203024314 @default.
- W4211045541 hasConceptScore W4211045541C2775924081 @default.
- W4211045541 hasConceptScore W4211045541C31972630 @default.
- W4211045541 hasConceptScore W4211045541C33923547 @default.
- W4211045541 hasConceptScore W4211045541C41008148 @default.
- W4211045541 hasConceptScore W4211045541C47446073 @default.