Matches in SemOpenAlex for { <https://semopenalex.org/work/W4211047985> ?p ?o ?g. }
- W4211047985 endingPage "169" @default.
- W4211047985 startingPage "1" @default.
- W4211047985 abstract "The increasing abundance of large high-quality datasets, combined with significant technical advances over the last several decades have made machine learning into a major tool employed across a broad array of tasks including vision, language, finance, and security. However, success has been accompanied with important new challenges: many applications of machine learning are adversarial in nature. Some are adversarial because they are safety critical, such as autonomous driving. An adversary in these applications can be a malicious party aimed at causing congestion or accidents, or may even model unusual situations that expose vulnerabilities in the prediction engine. Other applications are adversarial because their task and/or the data they use are. For example, an important class of problems in security involves detection, such as malware, spam, and intrusion detection. The use of machine learning for detecting malicious entities creates an incentive among adversaries to evade detection by changing their behavior or the content of malicius objects they develop." @default.
- W4211047985 created "2022-02-13" @default.
- W4211047985 creator A5038669899 @default.
- W4211047985 creator A5087192873 @default.
- W4211047985 date "2018-08-08" @default.
- W4211047985 modified "2023-10-16" @default.
- W4211047985 title "Adversarial Machine Learning" @default.
- W4211047985 cites W147998453 @default.
- W4211047985 cites W1578479379 @default.
- W4211047985 cites W1594536929 @default.
- W4211047985 cites W1736726159 @default.
- W4211047985 cites W1787843065 @default.
- W4211047985 cites W1964538485 @default.
- W4211047985 cites W1966912382 @default.
- W4211047985 cites W1968998685 @default.
- W4211047985 cites W1980147176 @default.
- W4211047985 cites W1988622494 @default.
- W4211047985 cites W1992110042 @default.
- W4211047985 cites W1993693225 @default.
- W4211047985 cites W1995168330 @default.
- W4211047985 cites W1997477668 @default.
- W4211047985 cites W2004026774 @default.
- W4211047985 cites W2007562169 @default.
- W4211047985 cites W2023691706 @default.
- W4211047985 cites W2032247543 @default.
- W4211047985 cites W2038296020 @default.
- W4211047985 cites W2041615247 @default.
- W4211047985 cites W2082190528 @default.
- W4211047985 cites W2095195675 @default.
- W4211047985 cites W2103154003 @default.
- W4211047985 cites W2103749128 @default.
- W4211047985 cites W2103972604 @default.
- W4211047985 cites W2106005123 @default.
- W4211047985 cites W2106458073 @default.
- W4211047985 cites W2107397716 @default.
- W4211047985 cites W2109300365 @default.
- W4211047985 cites W2116775748 @default.
- W4211047985 cites W2117173631 @default.
- W4211047985 cites W2124104513 @default.
- W4211047985 cites W2125908420 @default.
- W4211047985 cites W2144906988 @default.
- W4211047985 cites W2146211964 @default.
- W4211047985 cites W2151298633 @default.
- W4211047985 cites W2161134697 @default.
- W4211047985 cites W2166128942 @default.
- W4211047985 cites W2180443860 @default.
- W4211047985 cites W2180612164 @default.
- W4211047985 cites W2224750461 @default.
- W4211047985 cites W2243397390 @default.
- W4211047985 cites W2293768274 @default.
- W4211047985 cites W2296452361 @default.
- W4211047985 cites W2399574216 @default.
- W4211047985 cites W2399587145 @default.
- W4211047985 cites W2423041303 @default.
- W4211047985 cites W2482374127 @default.
- W4211047985 cites W2525598640 @default.
- W4211047985 cites W2536353943 @default.
- W4211047985 cites W2543927648 @default.
- W4211047985 cites W2558890589 @default.
- W4211047985 cites W2574797807 @default.
- W4211047985 cites W2603766943 @default.
- W4211047985 cites W2611328865 @default.
- W4211047985 cites W2732916693 @default.
- W4211047985 cites W2740067745 @default.
- W4211047985 cites W2740586183 @default.
- W4211047985 cites W2765567599 @default.
- W4211047985 cites W2766554185 @default.
- W4211047985 cites W2767023880 @default.
- W4211047985 cites W2787894218 @default.
- W4211047985 cites W2808213427 @default.
- W4211047985 cites W2885803187 @default.
- W4211047985 cites W2913525780 @default.
- W4211047985 cites W2963341057 @default.
- W4211047985 cites W2963777745 @default.
- W4211047985 cites W2963857521 @default.
- W4211047985 cites W2963982390 @default.
- W4211047985 cites W2964082701 @default.
- W4211047985 cites W3023058184 @default.
- W4211047985 cites W3103882218 @default.
- W4211047985 cites W3161677312 @default.
- W4211047985 cites W4206103160 @default.
- W4211047985 cites W4210278090 @default.
- W4211047985 cites W4230674625 @default.
- W4211047985 cites W4236127247 @default.
- W4211047985 cites W4238805501 @default.
- W4211047985 cites W4249716558 @default.
- W4211047985 cites W4253730333 @default.
- W4211047985 cites W4293775970 @default.
- W4211047985 cites W4307347247 @default.
- W4211047985 cites W9657784 @default.
- W4211047985 doi "https://doi.org/10.2200/s00861ed1v01y201806aim039" @default.
- W4211047985 hasPublicationYear "2018" @default.
- W4211047985 type Work @default.
- W4211047985 citedByCount "59" @default.
- W4211047985 countsByYear W42110479852019 @default.
- W4211047985 countsByYear W42110479852020 @default.
- W4211047985 countsByYear W42110479852021 @default.
- W4211047985 countsByYear W42110479852022 @default.