Matches in SemOpenAlex for { <https://semopenalex.org/work/W4211052996> ?p ?o ?g. }
- W4211052996 endingPage "235" @default.
- W4211052996 startingPage "219" @default.
- W4211052996 abstract "Free Access References Book Editor(s):Richard D. Riley, Keele University, Keele, UKSearch for more papers by this authorJayne F. Tierney, MRC Clinical Trials Unit at UCL, London, UKSearch for more papers by this authorLesley A. Stewart, University of York, York, UKSearch for more papers by this author First published: 22 April 2021 https://doi.org/10.1002/9781119333784.refs2 AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinked InRedditWechat References Simmonds MC, Higgins JPT, Stewart LA, et al. Meta-analysis of individual patient data from randomized trials: a review of methods used in practice. Clinical Trials 2005; 2: 209– 217. CrossrefPubMedWeb of Science®Google Scholar Riley RD, Lambert PC, Abo-Zaid G. Meta-analysis of individual participant data: rationale, conduct, and reporting. BMJ 2010; 340: c221. CrossrefPubMedWeb of Science®Google Scholar Abo-Zaid G, Guo B, Deeks JJ, et al. Individual participant data meta-analyses should not ignore clustering. J Clin Epidemiol 2013; 66(8): 865– 873 e4. CrossrefPubMedWeb of Science®Google Scholar Stewart GB, Altman DG, Askie LM, et al. Statistical analysis of individual participant data meta-analyses: a comparison of methods and recommendations for practice. PLoS One 2012; 7(10): e46042. CrossrefCASPubMedWeb of Science®Google Scholar Bowden J, Tierney JF, Simmonds M, et al. Individual patient data meta-analysis of time-to-event outcomes: one-stage versus two-stage approaches for estimating the hazard ratio under a random effects model. Res Synth Methods 2011; 2(3): 150– 162. Wiley Online LibraryPubMedWeb of Science®Google Scholar Higgins JPT, Green SB. Cochrane Handbook for Systematic Reviews of Interventions Version 5.1.0 [updated March 2011]: The Cochrane Collaboration (Available from www.handbook.cochrane.org) 2011. Google Scholar Burke DL, Ensor J, Riley RD. Meta-analysis using individual participant data: one-stage and two-stage approaches, and why they may differ. Stat Med 2017; 36(5): 855– 875. Wiley Online LibraryPubMedWeb of Science®Google Scholar Riley RD, Simmonds MC, Look MP. Evidence synthesis combining individual patient data and aggregate data: a systematic review identified current practice and possible methods. J Clin Epidemiol 2007; 60(5): 431– 439. CrossrefPubMedWeb of Science®Google Scholar Brown H, Prescott R. Applied Mixed Models in Medicine ( 3rd edition). Chichester, UK: Wiley 2015. Google Scholar McCulloch CE, Searle SR, Neuhaus JM. Generalized, Linear, and Mixed Models ( 2nd edition). Hoboken, NJ: Wiley 2008. Google Scholar Littell RC, Milliken GA, Stroup WW, et al. SAS System for Mixed Models. SAS Institute Inc. 1996. Google Scholar Cox DR. Regression models and life-tables. JRoyal Stat Soc Series B 1972; 34(2): 187– 220. Wiley Online LibraryGoogle Scholar Brown HK, Kempton RA. The application of REML in clinical trials. Stat Med 1994; 13(16): 1601– 1617. Wiley Online LibraryCASPubMedWeb of Science®Google Scholar Stijnen T, Hamza TH, Özdemir P. Random effects meta-analysis of event outcome in the framework of the generalized linear mixed model with applications in sparse data. Stat Med 2010; 29: 3046– 3067. Wiley Online LibraryPubMedWeb of Science®Google Scholar Jackson D, White IR. When should meta-analysis avoid making hidden normality assumptions? Biom J 2018; 60(6): 1040– 1058. Wiley Online LibraryPubMedWeb of Science®Google Scholar Rogozinska E, Marlin N, Jackson L, et al. Effects of antenatal diet and physical activity on maternal and fetal outcomes: individual patient data meta-analysis and health economic evaluation. Health Technol Assess 2017; 21(41): 1– 158. CrossrefPubMedWeb of Science®Google Scholar Papadimitropoulou K, Stijnen T, Dekkers OM, et al. One-stage random effects meta-analysis using linear mixed models for aggregate continuous outcome data. Res Synth Methods 2019; 10(3): 360– 375. Wiley Online LibraryPubMedWeb of Science®Google Scholar Shieh G. Power and sample size calculations for comparison of two regression lines with heterogeneous variances. PLoS One 2018; 13(12): e0207745. CrossrefPubMedWeb of Science®Google Scholar Vickers AJ, Altman DG. Statistics notes: analysing controlled trials with baseline and follow up measurements. BMJ 2001; 323(7321): 1123– 1124. CrossrefCASPubMedWeb of Science®Google Scholar Deeks JJ, Higgins JP, Altman DG. Analysing data and undertaking meta-analyses. In: JP Higgins, S Green, eds. Cochrane Handbook for Systematic Reviews of Interventions: Cochrane Book Series. Chichester, UK: Wiley 2008. Wiley Online LibraryGoogle Scholar Senn S. Change from baseline and analysis of covariance revisited. Stat Med 2006; 30: 4334– 4344. Wiley Online LibraryWeb of Science®Google Scholar McKenzie JE, Herbison GP, Deeks JJ. Impact of analysing continuous outcomes using final values, change scores and analysis of covariance on the performance of meta-analytic methods: a simulation study. Res Synth Methods 2016; 7(4): 371– 386. Wiley Online LibraryPubMedWeb of Science®Google Scholar Riley RD, Kauser I, Bland M, et al. Meta-analysis of randomised trials with a continuous outcome according to baseline imbalance and availability of individual participant data. Stat Med 2013; 32(16): 2747– 2766. Wiley Online LibraryPubMedWeb of Science®Google Scholar Frison LJ, Pocock SJ. Linearly divergent treatment effects in clinical trials with repeated measures: efficient analysis using summary statistics. Stat Med 1997 16: 2855– 2872. Wiley Online LibraryCASPubMedWeb of Science®Google Scholar Van Breukelen GJ. ANCOVA versus change from baseline: more power in randomized studies, more bias in nonrandomized studies. J Clin Epidemiol 2006; 59: 920– 925. CrossrefPubMedWeb of Science®Google Scholar White IR, Thompson SG. Adjusting for partially missing baseline measurements in randomized trials. Stat Med 2005; 24(7): 993– 1007. Wiley Online LibraryPubMedWeb of Science®Google Scholar Whitehead A. Meta-analysis of Controlled Clinical Trials. West Sussex, UK: Wiley 2002. Wiley Online LibraryGoogle Scholar White IR, Thomas J. Standardized mean differences in individually-randomized and cluster-randomized trials, with applications to meta-analysis. Clin Trials 2005; 2(2): 141– 151. CrossrefPubMedWeb of Science®Google Scholar Murad MH, Wang Z, Chu H, et al. When continuous outcomes are measured using different scales: guide for meta-analysis and interpretation. BMJ 2019; 364: k4817. CrossrefPubMedGoogle Scholar Borenstein M. Introduction to Meta-analysis. Chichester, UK: Wiley 2009. Wiley Online LibraryCASPubMedGoogle Scholar Cummings P. The relative merits of risk ratios and odds ratios. Arch Pediatr Adolesc Med 2009; 163(5): 438– 445. CrossrefPubMedWeb of Science®Google Scholar Bradburn MJ, Deeks JJ, Berlin JA, et al. Much ado about nothing: a comparison of the performance of meta-analytical methods with rare events. Stat Med 2007; 26(1): 53– 77. Wiley Online LibraryPubMedWeb of Science®Google Scholar Sweeting MJ, Sutton AJ, Lambert PC. What to add to nothing? Use and avoidance of continuity corrections in meta-analysis of sparse data. Stat Med 2004; 23(9): 1351– 1375. Wiley Online LibraryPubMedWeb of Science®Google Scholar Spittal MJ, Pirkis J, Gurrin LC. Meta-analysis of incidence rate data in the presence of zero events. BMC Med Res Methodol 2015; 15: 42. CrossrefPubMedWeb of Science®Google Scholar Cox DR, Snell EJ. The Analysis of Binary Data ( 2nd edition). London: Chapman & Hall 1989. Google Scholar Heinze G, Schemper M. A solution to the problem of separation in logistic regression. Stat Med 2002; 21(16): 2409– 2419. Wiley Online LibraryCASPubMedWeb of Science®Google Scholar Kuss O. Statistical methods for meta-analyses including information from studies without any events—add nothing to nothing and succeed nevertheless. Stat Med 2015; 34(7): 1097– 1116. Wiley Online LibraryCASPubMedWeb of Science®Google Scholar Whitehead A, Omar RZ, Higgins JP, et al. Meta-analysis of ordinal outcomes using individual patient data. Stat Med 2001; 20(15): 2243– 2260. Wiley Online LibraryCASPubMedWeb of Science®Google Scholar Ananth CV, Kleinbaum DG. Regression models for ordinal responses: a review of methods and applications. Int J Epidemiol 1997; 26(6): 1323– 1333. CrossrefCASPubMedWeb of Science®Google Scholar Hall DB. Zero-inflated Poisson and binomial regression with random effects: a case study. Biometrics 2000; 56(4): 1030– 1039. Wiley Online LibraryCASPubMedWeb of Science®Google Scholar Yau KK, Lee AH. Zero-inflated Poisson regression with random effects to evaluate an occupational injury prevention programme. Stat Med 2001; 20(19): 2907– 2920. Wiley Online LibraryCASPubMedWeb of Science®Google Scholar Lee AH, Wang K, Scott JA, et al. Multi-level zero-inflated poisson regression modelling of correlated count data with excess zeros. Stat Methods Med Res 2006; 15(1): 47– 61. CrossrefPubMedWeb of Science®Google Scholar Zou G. A modified Poisson regression approach to prospective studies with binary data. Am J Epidemiol 2004; 159(7): 702– 706. CrossrefPubMedWeb of Science®Google Scholar Crowther MJ, Riley RD, Staessen JA, et al. Individual patient data meta-analysis of survival data using Poisson regression models. BMC Med Res Methodol 2012; 12: 34. CrossrefPubMedWeb of Science®Google Scholar Heinze G, Schemper M. A solution to the problem of monotone likelihood in Cox regression. Biometrics 2001; 57(1): 114– 119. Wiley Online LibraryCASPubMedWeb of Science®Google Scholar Wang JG, Staessen JA, Franklin SS, et al. Systolic and diastolic blood pressure lowering as determinants of cardiovascular outcome. Hypertension 2005; 45(5): 907– 913. CrossrefCASPubMedWeb of Science®Google Scholar Senn SJ. Covariate imbalance and random allocation in clinical trials. Stat Med 1989; 8(4): 467– 475. Wiley Online LibraryCASPubMedWeb of Science®Google Scholar Senn S. Statistical Issues in Drug Development ( 2nd edition). Chichester, UK and Hoboken, NJ: Wiley 2007. Wiley Online LibraryGoogle Scholar Senn S. Seven myths of randomisation in clinical trials. Stat Med 2013; 32(9): 1439– 1450. Wiley Online LibraryCASPubMedWeb of Science®Google Scholar Hernandez AV, Eijkemans MJ, Steyerberg EW. Randomized controlled trials with time-to-event outcomes: how much does prespecified covariate adjustment increase power? Ann Epidemiol 2006; 16: 41– 48. CrossrefPubMedWeb of Science®Google Scholar Maas AI, Steyerberg EW, Marmarou A, et al. IMPACT recommendations for improving the design and analysis of clinical trials in moderate to severe traumatic brain injury. Neurotherapeutics 2010; 7(1): 127– 134. CrossrefPubMedWeb of Science®Google Scholar Roozenbeek B, Maas AI, Lingsma HF, et al. Baseline characteristics and statistical power in randomized controlled trials: selection, prognostic targeting, or covariate adjustment? Crit Care Med 2009; 37(10): 2683– 2690. CrossrefPubMedWeb of Science®Google Scholar Hernández AV, Steyerberg EW, Habbema JD. Covariate adjustment in randomized controlled trials with dichotomous outcomes increases statistical power and reduces sample size requirements. J Clin Epidemiol 2004; 57(5): 454– 460. CrossrefPubMedWeb of Science®Google Scholar Burgess S. Estimating and contextualizing the attenuation of odds ratios due to non collapsibility. Commun Stat Theory and Methods 2017; 46(2): 786– 804. CrossrefWeb of Science®Google Scholar Greenland S, Robins MR, Pearl J. Confounding and collapsibility in causal inference. Statistical Science 1999; 14: 29– 46. CrossrefPubMedWeb of Science®Google Scholar Shrier I, Pang M. Confounding, effect modification, and the odds ratio: common misinterpretations. J Clin Epidemiol 2015; 68(4): 470– 474. CrossrefPubMedWeb of Science®Google Scholar Royston P, Altman DG, Sauerbrei W. Dichotomizing continuous predictors in multiple regression: a bad idea. Stat Med 2006; 25(1): 127– 141. Wiley Online LibraryPubMedWeb of Science®Google Scholar Harrell Jr. FE. https://twitter.com/f2harrell/status/1008090230438744069, 2018. Google Scholar Huitfeldt A, Goldstein A, Swanson SA. The choice of effect measure for binary outcomes: introducing counterfactual outcome state transition parameters. Epidemiol Methods 2018; 7(1): 20160014. CrossrefPubMedGoogle Scholar Greenland S. Basic problems in interaction assessment. Environ Health Perspect 1993; 101 Suppl 4: 59– 66. CrossrefPubMedWeb of Science®Google Scholar VanderWeele Tyler J, Knol Mirjam J. A tutorial on Interaction. Epidemiol Methods 2014; 3(1): 33. Google Scholar Riley RD, Moons KGM, Snell KIE, et al. A guide to systematic review and meta-analysis of prognostic factor studies. BMJ 2019; 364: k4597. CrossrefPubMedGoogle Scholar Altman DG, Lausen B, Sauerbrei W, et al. Dangers of using “optimal” cutpoints in the evaluation of prognostic factors. J Natl Cancer Inst 1994; 86(11): 829– 835. CrossrefCASPubMedWeb of Science®Google Scholar Altman DG, Royston P. Statistics notes: the cost of dichotomising continuous variables. BMJ 2006; 332: 1080. CrossrefPubMedWeb of Science®Google Scholar Durrleman S, Simon R. Flexible regression models with cubic splines. Stat Med 1989; 8: 551– 561. Wiley Online LibraryCASPubMedWeb of Science®Google Scholar Harrell FE, Jr. Regression Modeling Strategies: With Applications to Linear Models, Logistic and Ordinal Regression, and Survival Analysis ( 2nd edition). New York: Springer 2015. CrossrefGoogle Scholar Nieboer D, Vergouwe Y, Roobol MJ, et al. Nonlinear modeling was applied thoughtfully for risk prediction: the Prostate Biopsy Collaborative Group. J Clin Epidemiol 2015; 68(4): 426– 434. CrossrefPubMedWeb of Science®Google Scholar Sauerbrei W, Royston P. Building multivariable prognostic and diagnostic models: transformation of the predictors by using fractional polynomials. J Royal Stat SocSeries A 1999; 162: 71– 94. Wiley Online LibraryWeb of Science®Google Scholar Royston P, Sauerbrei W. Multivariable model-building – A pragmatic approach to regression analysis based on fractional polynomials for modelling continuous variables. Chichester, UK: Wiley 2008. Google Scholar Royston P, Altman DG. Regression using fractional polynomials of continuous covariates: parsimonious parametric modelling. J Royal Stat Soc Series C 1994; 43(3): 429– 467. Wiley Online LibraryWeb of Science®Google Scholar Donner A, Klar N. Issues in the meta-analysis of cluster randomized trials. Stat Med 2002; 21(19): 2971– 2980. Wiley Online LibraryCASPubMedWeb of Science®Google Scholar Eldridge S, Kerry S. A Practical Guide to Cluster Randomised Trials in Health Services Research. Chichester, UK: Wiley 2012. Wiley Online LibraryGoogle Scholar Bland JM, Kerry SM. Statistics notes. Trials randomised in clusters. BMJ 1997; 315(7108): 600. CASGoogle Scholar Kahan BC. Accounting for centre-effects in multicentre trials with a binary outcome – when, why, and how? BMC Med Res Methodol 2014; 14: 20. CrossrefPubMedWeb of Science®Google Scholar Kahan BC, Morris TP. Analysis of multicentre trials with continuous outcomes: when and how should we account for centre effects? Stat Med 2013; 32(7): 1136– 1149. Wiley Online LibraryPubMedWeb of Science®Google Scholar Jones B, Teather D, Wang J, et al. A comparison of various estimators of a treatment difference for a multi-centre clinical trial. Stat Med 1998; 17(15–16): 1767– 1777. Wiley Online LibraryCASPubMedWeb of Science®Google Scholar Localio AR, Berlin JA, Ten Have TR, et al. Adjustments for center in multicenter studies: an overview. Ann Intern Med 2001; 135(2): 112– 123. CrossrefCASPubMedWeb of Science®Google Scholar Sullivan TR, White IR, Salter AB, et al. Should multiple imputation be the method of choice for handling missing data in randomized trials? Stat Methods Med Res 2018; 27(9): 2610– 2626. CrossrefPubMedWeb of Science®Google Scholar Groenwold RH, Donders AR, Roes KC, et al. Dealing with missing outcome data in randomized trials and observational studies. Am J Epidemiol 2012; 175(3): 210– 217. CrossrefPubMedWeb of Science®Google Scholar Jackson D, White IR, Seaman S, et al. Relaxing the independent censoring assumption in the Cox proportional hazards model using multiple imputation. Stat Med 2014; 33(27): 4681– 4694. Wiley Online LibraryPubMedWeb of Science®Google Scholar Cro S, Morris TP, Kenward MG, et al. Sensitivity analysis for clinical trials with missing continuous outcome data using controlled multiple imputation: a practical guide. Stat Med 2020; 39(21): 2815– 2842. Wiley Online LibraryPubMedWeb of Science®Google Scholar Riley RD, Price MJ, Jackson D, et al. Multivariate meta-analysis using individual participant data. Res Synth Method 2015; 6: 157– 174. Wiley Online LibraryCASPubMedWeb of Science®Google Scholar Fibrinogen Studies Collaboration. Systematically missing confounders in individual participant data meta-analysis of observational cohort studies. Stat Med 2009; 28(8): 1218– 1237. Wiley Online LibraryPubMedWeb of Science®Google Scholar Audigier V, White IR, Jolani S, et al. Multiple imputation for multilevel data with continuous and binary variables. Statist Sci 2018; 33(2): 160– 83. CrossrefWeb of Science®Google Scholar Jolani S, Debray TP, Koffijberg H, et al. Imputation of systematically missing predictors in an individual participant data meta-analysis: a generalized approach using MICE. Stat Med 2015; 34(11): 1841– 1863. Wiley Online LibraryPubMedWeb of Science®Google Scholar Quartagno M, Grund S, Carpenter J. jomo: a flexible package for two-level joint modelling multiple imputation. R Journal 2019; 11(2): 205– 228. CrossrefWeb of Science®Google Scholar Groenwold RH, White IR, Donders AR, et al. Missing covariate data in clinical research: when and when not to use the missing-indicator method for analysis. CMAJ 2012; 184(11): 1265– 1269. CrossrefPubMedWeb of Science®Google Scholar Whitehead A, Whitehead J. A general parametric approach to the meta-analysis of randomized clinical trials. Stat Med 1991; 10(11): 1665– 1677. Wiley Online LibraryCASPubMedWeb of Science®Google Scholar Rice K, Higgins JPT, Lumley T. A re-evaluation of fixed effect(s) meta-analysis. J RoyalStat Soc Series A StatSoc 2018; 181(1): 205– 227. Wiley Online LibraryWeb of Science®Google Scholar Higgins JP, Thompson SG, Spiegelhalter DJ. A re-evaluation of random-effects meta-analysis. J Royal Stat Soc Series A 2009; 172: 137– 159. Wiley Online LibraryPubMedWeb of Science®Google Scholar Jackson D, Turner R, Rhodes K, et al. Methods for calculating confidence and credible intervals for the residual between-study variance in random effects meta-regression models. BMC Med Res Methodol 2014; 14: 103. CrossrefPubMedWeb of Science®Google Scholar Jackson D, Bowden J, Baker R. Approximate confidence intervals for moment-based estimators of the between-study variance in random effects meta-analysis. Res Synths Methods 2015; 6(4): 372– 382. Wiley Online LibraryPubMedWeb of Science®Google Scholar Jackson D, Bowden J. Confidence intervals for the between-study variance in random-effects meta-analysis using generalised heterogeneity statistics: should we use unequal tails? BMC Med Res Methodol 2016; 16: 118. CrossrefPubMedWeb of Science®Google Scholar Jackson D. Confidence intervals for the between-study variance in random effects meta-analysis using generalised Cochran heterogeneity statistics. Res Synth Methods 2013; 4(3): 220– 229. Wiley Online LibraryPubMedWeb of Science®Google Scholar Langan D, Higgins JPT, Jackson D, et al. A comparison of heterogeneity variance estimators in simulated random-effects meta-analyses. Res Synth Methods 2019; 10(1): 83– 98. Wiley Online LibraryPubMedWeb of Science®Google Scholar DerSimonian R, Laird N. Meta-analysis in clinical trials. Control Clin Trials 1986; 7: 177– 188. CrossrefCASPubMedGoogle Scholar Rucker G, Schwarzer G, Carpenter JR, et al. Undue reliance on I(2) in assessing heterogeneity may mislead. BMC Med Res Methodol 2008; 8: 79. CrossrefPubMedWeb of Science®Google Scholar Greenland S, Mansournia MA, Altman DG. Sparse data bias: a problem hiding in plain sight. BMJ 2016; 352: i1981. CrossrefPubMedWeb of Science®Google Scholar Yusuf S, Peto R, Lewis J, et al. Beta blockade during and after myocardial infarction: an overview of the randomized trials. Progr Cardiovasc Dis 1985; 17: 335– 371. CrossrefGoogle Scholar Mantel N, Haenszel W. Statistical aspects of the analysis of data from retrospective studies of disease. J Nat Cancer Inst 1959; 22: 719– 748. CASPubMedWeb of Science®Google Scholar Langan D, Higgins JP, Simmonds M. An empirical comparison of heterogeneity variance estimators in 12 894 meta-analyses. Res Synth Methods 2015; 6(2): 195– 205. Wiley Online LibraryPubMedWeb of Science®Google Scholar Review Manager (RevMan). Version 5.3 [program]. Copenhagen: The Nordic Cochrane Centre, The Cochrane Collaboration, 2014. Google Scholar Kontopantelis E, Reeves D. Performance of statistical methods for meta-analysis when true study effects are non-normally distributed: a comparison between DerSimonian-Laird and restricted maximum likelihood. Stat Methods Med Res 2012; 21(6): 657– 659. CrossrefPubMedWeb of Science®Google Scholar DerSimonian R, Kacker R. Random-effects model for meta-analysis of clinical trials: an update. Contemp Clin Trials 2007; 28(2): 105– 114. CrossrefPubMedWeb of Science®Google Scholar Patterson HD, Thompson R. Recovery of inter-block information when block sizes are unequal. Biometrika 1971; 58(3): 545– 554. CrossrefWeb of Science®Google Scholar Harville DA. Maximum Likelihood approaches to variance component estimation and to related problems. J Am Stat Assoc 1977; 72(358): 320– 338. CrossrefWeb of Science®Google Scholar Veroniki AA, Jackson D, Viechtbauer W, et al. Methods to estimate the between-study variance and its uncertainty in meta-analysis. Res Synth Methods 2016; 7(1): 55– 79. Wiley Online LibraryPubMedWeb of Science®Google Scholar Legha A, Riley RD, Ensor J, et al. Individual participant data meta-analysis of continuous outcomes: a comparison of approaches for specifying and estimating one-stage models. Stat Med 2018; 37(29): 4404– 4420. Wiley Online LibraryPubMedWeb of Science®Google Scholar Paule RC, Mandel J. Consensus values and weighting factors. J Res Natl Bur Stand 1982; 87: 377– 385. CrossrefWeb of Science®Google Scholar Cornell JE, Mulrow CD, Localio R, et al. Random-effects meta-analysis of inconsistent effects: a time for change. Ann Intern Med 2014; 160(4): 267– 270. CrossrefPubMedWeb of Science®Google Scholar Hartung J, Knapp G. A refined method for the meta-analysis of controlled clinical trials with binary outcome. Stat Med 2001; 20(24): 3875– 3889. Wiley Online LibraryCASPubMedWeb of Science®Google Scholar Hartung J, Knapp G. On tests of the overall treatment effect in meta-analysis with normally distributed responses. Stat Med 2001; 20(12): 1771– 1782. Wiley Online LibraryCASPubMedWeb of Science®Google Scholar Sidik K, Jonkman JN. A simple confidence interval for meta-analysis. Stat Med 2002; 21(21): 3153– 3159. Wiley Online LibraryCASPubMedWeb of Science®Google Scholar Wiksten A, Rucker G, Schwarzer G. Hartung-Knapp method is not always conservative compared with fixed-effect meta-analysis. Stat Med 2016; 35(15): 2503– 2515. Wiley Online LibraryPubMedWeb of Science®Google Scholar Jackson D, Law M, Rucker G, et al. The Hartung-Knapp modification for random-effects meta-analysis: a useful refinement but are there any residual concerns? Stat Med 2017; 36(25): 3923– 3934. Wiley Online LibraryPubMedWeb of Science®Google Scholar Rover C, Knapp G, Friede T. Hartung-Knapp-Sidik-Jonkman approach and its modification for random-effects meta-analysis with few studies. BMC Med Res Methodol 2015; 15(1): 99. CrossrefPubMedWeb of Science®Google Scholar van Aert RCM, Jackson D. A new justification of the Hartung-Knapp method for random-effects meta-analysis based on weighted least squares regression. Res Synth Methods 2019; 10(4): 515– 527. Wiley Online LibraryPubMedWeb of Science®Google Scholar Sidik K, Jonkman JN. Robust variance estimation for random effects meta-analysis. Comput Stat Data Anal 2006; 50(12): 3681– 3701. CrossrefWeb of Science®Google Scholar Fisher DJ. Two-stage individual participant data meta-analysis and generalized forest plots. Stata J 2015; 15(2): 369– 396. CrossrefPubMedWeb of Science®Google Scholar Morris TP, Fisher DJ, Kenward MG, et al. Meta-analysis of Gaussian individual patient data: Two-stage or not two-stage? Stat Med 2018; 37(9): 1419– 1438. Wiley Online LibraryPubMedWeb of Science®Google Scholar IntHout J, Ioannidis JP, Borm GF. The Hartung-Knapp-Sidik-Jonkman method for random effects meta-analysis is straightforward and considerably outperforms the standard DerSimonian-Laird method. BMC Med Res Methodol 2014; 14: 25. CrossrefPubMedWeb of Science®Google Scholar Partlett C, Riley RD. Random effects meta-analysis: coverage performance of 95% confidence and prediction intervals following REML estimation. Stat Med 2017; 36(2): 301– 317. Wiley Online LibraryPubMedWeb of Science®Google Scholar Bayes T. An essay toward solving a problem in the doctrine of chances. Philos Trans R Soc 1764; 53: 418. Google Scholar Sutton AJ, Abrams KR. Bayesian methods in meta-analysis and evidence synthesis. Stat Methods Med Res 2001; 10(4): 277– 303. CrossrefCASPubMedWeb of Science®Google Scholar Bodnar O, Link A, Arendacka B, et al. Bayesian estimation in random effects meta-analysis using a non-informative prior. Stat Med 2017; 36(2): 378– 399. Wiley Online LibraryPubMedWeb of Science®Google Scholar Dias S, Sutton AJ, Ades AE, et al. Evidence synthesis for decision making 2: a generalized linear modeling framework for pairwise and network meta-analysis of randomized controlled trials. Med Decis Making 2013; 33(5): 607– 617. CrossrefPubMedWeb of Science®Google Scholar Lambert PC, Sutton AJ, Burton PR, et al. How vague is vague? A simulation study of the impact of the use of vague prior distributions in MCMC. Stat Med 2005; 24: 2401– 2428. Wiley Online LibraryPubMedWeb of Science®Google Scholar Turner RM, Dominguez-Islas CP, Jackson D, et al. Incorporating external evidence on between-trial heterogeneity in network meta-analysis. Stat Med 2019; 38(8): 1321– 1335. Wiley Online LibraryPubMedWeb of Science®Google Scholar Rhodes KM, Turner RM, White IR, et al. Implementing informative priors for heterogeneity in meta-analysis using meta-regression and pseudo data. Stat Med 2016; 35(29): 5495– 5511. Wiley Online LibraryPubMedWeb of Science®Google Scholar Turner RM, Davey J, Clarke MJ, et al. Predicting the extent of heterogeneity in meta-analysis, using empirical data from the Cochrane Database of Systematic Reviews. Int J Epidemiol 2012; 41(3): 818– 827. CrossrefPubMedWeb of Science®Google Scholar Spiegelhalter DJ, Abrams KR, Myles JP. Bayesian Approaches to Clinical Trials & Health-Care Evaluation. Chichester, UK: Wiley 2004. Wiley Online LibraryGoogle Scholar Burke DL, Bujkiewicz S, Riley RD. Bayesian bivariate meta-analysis of correlated effects: impact of the prior distributions on the between-study correlation, borrowing of strength, and joint inferences. Stat Methods Med Res 2018; 27(2): 428– 450." @default.
- W4211052996 created "2022-02-13" @default.
- W4211052996 date "2021-04-22" @default.
- W4211052996 modified "2023-09-26" @default.
- W4211052996 title "References" @default.
- W4211052996 cites W1484801239 @default.
- W4211052996 cites W1509852289 @default.
- W4211052996 cites W1521127340 @default.
- W4211052996 cites W1543389126 @default.
- W4211052996 cites W1562190372 @default.
- W4211052996 cites W1592228396 @default.
- W4211052996 cites W1595237219 @default.
- W4211052996 cites W1596902544 @default.
- W4211052996 cites W1643140812 @default.
- W4211052996 cites W1701638866 @default.
- W4211052996 cites W1784175517 @default.
- W4211052996 cites W1841651683 @default.
- W4211052996 cites W1868522740 @default.
- W4211052996 cites W1872421448 @default.
- W4211052996 cites W1879391377 @default.
- W4211052996 cites W1907932102 @default.
- W4211052996 cites W1923600032 @default.
- W4211052996 cites W1933223799 @default.
- W4211052996 cites W1957946432 @default.
- W4211052996 cites W1958895821 @default.
- W4211052996 cites W1966032249 @default.
- W4211052996 cites W1966619479 @default.
- W4211052996 cites W1966953116 @default.
- W4211052996 cites W1967046314 @default.
- W4211052996 cites W1969298821 @default.
- W4211052996 cites W1970340946 @default.
- W4211052996 cites W1973529103 @default.
- W4211052996 cites W1973914781 @default.
- W4211052996 cites W1974529833 @default.
- W4211052996 cites W1975780287 @default.
- W4211052996 cites W1978544117 @default.
- W4211052996 cites W1980472079 @default.
- W4211052996 cites W1981747359 @default.
- W4211052996 cites W1981968527 @default.
- W4211052996 cites W1982003846 @default.
- W4211052996 cites W1982265233 @default.
- W4211052996 cites W1982585616 @default.
- W4211052996 cites W1982967337 @default.
- W4211052996 cites W1983722797 @default.
- W4211052996 cites W1985851580 @default.
- W4211052996 cites W1987838173 @default.
- W4211052996 cites W1989782940 @default.
- W4211052996 cites W1990005059 @default.
- W4211052996 cites W1990496960 @default.
- W4211052996 cites W1996016456 @default.
- W4211052996 cites W1997098331 @default.
- W4211052996 cites W1997889941 @default.
- W4211052996 cites W1999772314 @default.
- W4211052996 cites W2000084758 @default.
- W4211052996 cites W2000297407 @default.
- W4211052996 cites W2002256171 @default.
- W4211052996 cites W2002504562 @default.
- W4211052996 cites W2003750542 @default.
- W4211052996 cites W2003862733 @default.
- W4211052996 cites W2004744448 @default.
- W4211052996 cites W2004818381 @default.
- W4211052996 cites W2006031679 @default.
- W4211052996 cites W2006623746 @default.
- W4211052996 cites W2007719429 @default.
- W4211052996 cites W2012668456 @default.
- W4211052996 cites W2013416277 @default.
- W4211052996 cites W2015751963 @default.
- W4211052996 cites W2015795623 @default.
- W4211052996 cites W2015928959 @default.
- W4211052996 cites W2016832451 @default.
- W4211052996 cites W2017650294 @default.
- W4211052996 cites W2018696687 @default.
- W4211052996 cites W2018811884 @default.
- W4211052996 cites W2019474022 @default.
- W4211052996 cites W2022564653 @default.
- W4211052996 cites W2026417450 @default.
- W4211052996 cites W2027592602 @default.
- W4211052996 cites W2027840956 @default.
- W4211052996 cites W2028896946 @default.
- W4211052996 cites W2029266105 @default.
- W4211052996 cites W2029327136 @default.
- W4211052996 cites W2032506622 @default.
- W4211052996 cites W2033299442 @default.
- W4211052996 cites W2035641568 @default.
- W4211052996 cites W2036147078 @default.
- W4211052996 cites W2036756589 @default.
- W4211052996 cites W2037028900 @default.
- W4211052996 cites W2041412209 @default.
- W4211052996 cites W2042304363 @default.
- W4211052996 cites W2043241676 @default.
- W4211052996 cites W2043349008 @default.
- W4211052996 cites W2043446388 @default.
- W4211052996 cites W2043458654 @default.
- W4211052996 cites W2045657044 @default.
- W4211052996 cites W2047255362 @default.
- W4211052996 cites W2049192772 @default.
- W4211052996 cites W2050118439 @default.
- W4211052996 cites W2050128783 @default.