Matches in SemOpenAlex for { <https://semopenalex.org/work/W4211055935> ?p ?o ?g. }
Showing items 1 to 94 of
94
with 100 items per page.
- W4211055935 endingPage "108820" @default.
- W4211055935 startingPage "108820" @default.
- W4211055935 abstract "5G is the fifth generation of cellular networks. It enables billions of connected devices to gather and share information in real time; a key facilitator in Industrial Internet of Things (IoT) applications. It has more capabilities in terms of bandwidth, latency/delay, processing powers and flexibility to utilize either edge or cloud resources. Furthermore, 6G is expected to be equipped with the new capability to converge ubiquitous communication, computation, sensing and controlling for a variety of sectors, which heightens the complexity in a more heterogeneous environment This increased complexity, combined with energy efficiency and Service Level Agreement (SLA) requirements makes application of Machine Learning (ML) and distributed ML necessary. A decentralized approach stemming from distributed learning is a very attractive option compared with a centralized architecture for model learning and inference. Distributed ML exploits recent Artificial Intelligence (AI) technology advancements to allow collaborated ML, whilst safeguarding private data, minimizing both communication and computation overhead along with addressing ultra-low latency requirements. In this paper, we review a number of distributed ML architectures and designs, that focus on optimizing communication, computation and resource distribution. Privacy, information security and compute frameworks, are also analyzed and compared with respect to different distributed ML approaches. We summarize the major contributions and trends in this area and highlight the potential of distributed ML to help researchers and practitioners make informed decisions on selecting the right ML approach for 5G and Beyond related AI applications. To enable distributed ML for 5G and Beyond, communication, security, and computing platform often counter balance each other, thus, consideration and optimization of these aspects at an overall system level is crucial to realize the full potential of AI for 5G and Beyond. These different aspects do not only pertain to 5G, but will also enable careful design of distributed machine learning architectures to circumvent the same hurdles that will inevitably burden 5G and Beyond network generations. This is the first survey paper that brings together all these aspects for distributed ML." @default.
- W4211055935 created "2022-02-13" @default.
- W4211055935 creator A5000790717 @default.
- W4211055935 creator A5012901886 @default.
- W4211055935 creator A5044423029 @default.
- W4211055935 creator A5050055136 @default.
- W4211055935 creator A5075464643 @default.
- W4211055935 date "2022-04-01" @default.
- W4211055935 modified "2023-09-30" @default.
- W4211055935 title "A survey: Distributed Machine Learning for 5G and beyond" @default.
- W4211055935 cites W2031533839 @default.
- W4211055935 cites W2203584209 @default.
- W4211055935 cites W2317339301 @default.
- W4211055935 cites W2416799949 @default.
- W4211055935 cites W2473418344 @default.
- W4211055935 cites W2603810864 @default.
- W4211055935 cites W2605344455 @default.
- W4211055935 cites W2624989916 @default.
- W4211055935 cites W2781091734 @default.
- W4211055935 cites W2902371444 @default.
- W4211055935 cites W2916693941 @default.
- W4211055935 cites W2962814013 @default.
- W4211055935 cites W2962883549 @default.
- W4211055935 cites W2971329741 @default.
- W4211055935 cites W2972260047 @default.
- W4211055935 cites W2972882814 @default.
- W4211055935 cites W2975128548 @default.
- W4211055935 cites W2999561085 @default.
- W4211055935 cites W3001299093 @default.
- W4211055935 cites W3015636663 @default.
- W4211055935 cites W3035134287 @default.
- W4211055935 cites W3035900025 @default.
- W4211055935 cites W3041971333 @default.
- W4211055935 cites W3044837284 @default.
- W4211055935 cites W3054983093 @default.
- W4211055935 cites W3063849920 @default.
- W4211055935 cites W3103802018 @default.
- W4211055935 cites W3106445841 @default.
- W4211055935 cites W3127355490 @default.
- W4211055935 cites W3127807476 @default.
- W4211055935 cites W3130992186 @default.
- W4211055935 cites W3175100006 @default.
- W4211055935 cites W3178661111 @default.
- W4211055935 cites W3203818865 @default.
- W4211055935 cites W4205228770 @default.
- W4211055935 cites W4206028622 @default.
- W4211055935 cites W4236099117 @default.
- W4211055935 doi "https://doi.org/10.1016/j.comnet.2022.108820" @default.
- W4211055935 hasPublicationYear "2022" @default.
- W4211055935 type Work @default.
- W4211055935 citedByCount "13" @default.
- W4211055935 countsByYear W42110559352022 @default.
- W4211055935 countsByYear W42110559352023 @default.
- W4211055935 crossrefType "journal-article" @default.
- W4211055935 hasAuthorship W4211055935A5000790717 @default.
- W4211055935 hasAuthorship W4211055935A5012901886 @default.
- W4211055935 hasAuthorship W4211055935A5044423029 @default.
- W4211055935 hasAuthorship W4211055935A5050055136 @default.
- W4211055935 hasAuthorship W4211055935A5075464643 @default.
- W4211055935 hasBestOaLocation W42110559351 @default.
- W4211055935 hasConcept C111919701 @default.
- W4211055935 hasConcept C120314980 @default.
- W4211055935 hasConcept C165696696 @default.
- W4211055935 hasConcept C2779960059 @default.
- W4211055935 hasConcept C38652104 @default.
- W4211055935 hasConcept C41008148 @default.
- W4211055935 hasConcept C79974875 @default.
- W4211055935 hasConceptScore W4211055935C111919701 @default.
- W4211055935 hasConceptScore W4211055935C120314980 @default.
- W4211055935 hasConceptScore W4211055935C165696696 @default.
- W4211055935 hasConceptScore W4211055935C2779960059 @default.
- W4211055935 hasConceptScore W4211055935C38652104 @default.
- W4211055935 hasConceptScore W4211055935C41008148 @default.
- W4211055935 hasConceptScore W4211055935C79974875 @default.
- W4211055935 hasFunder F4320322402 @default.
- W4211055935 hasLocation W42110559351 @default.
- W4211055935 hasOpenAccess W4211055935 @default.
- W4211055935 hasPrimaryLocation W42110559351 @default.
- W4211055935 hasRelatedWork W143242780 @default.
- W4211055935 hasRelatedWork W2015855483 @default.
- W4211055935 hasRelatedWork W2052094875 @default.
- W4211055935 hasRelatedWork W2092071486 @default.
- W4211055935 hasRelatedWork W2391167130 @default.
- W4211055935 hasRelatedWork W2463022069 @default.
- W4211055935 hasRelatedWork W2475198316 @default.
- W4211055935 hasRelatedWork W2580692153 @default.
- W4211055935 hasRelatedWork W2794408857 @default.
- W4211055935 hasRelatedWork W4283067488 @default.
- W4211055935 hasVolume "207" @default.
- W4211055935 isParatext "false" @default.
- W4211055935 isRetracted "false" @default.
- W4211055935 workType "article" @default.