Matches in SemOpenAlex for { <https://semopenalex.org/work/W4211058598> ?p ?o ?g. }
- W4211058598 endingPage "276" @default.
- W4211058598 startingPage "269" @default.
- W4211058598 abstract "Free Access References Klaus-Dieter Hungenberg, Ortsstrasse 135, 69488 Birkenau, GermanySearch for more papers by this authorMichael Wulkow, Harry-Wilters-Ring 27, 26180 Rastede, GermanySearch for more papers by this author Book Author(s):Klaus-Dieter Hungenberg, Ortsstrasse 135, 69488 Birkenau, GermanySearch for more papers by this authorMichael Wulkow, Harry-Wilters-Ring 27, 26180 Rastede, GermanySearch for more papers by this author First published: 16 April 2018 https://doi.org/10.1002/9783527685738.refs AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinked InRedditWechat References W.H. Ray. On the mathematical modeling of polymerization reactors. J. Macromol. Sci., Rev. Macromol. Chem., C8: 1– 56, 1972. CrossrefGoogle Scholar M. Wulkow. Computer aided modeling of polymer reaction engineering—the status of Predici, I-simulation. Macromol. React. Eng., 2(6): 461– 494, 2008. Wiley Online LibraryCASWeb of Science®Google Scholar G. Daumiller. Polymerisationsreaktionen in der Technik. Chem. Ing. Tech., 40: 673– 682, 1968. Wiley Online LibraryCASWeb of Science®Google Scholar J. Brandrup, E.H. Immergut, editors. Polymer Handbook. Wiley, New York, 1989. CASWeb of Science®Google Scholar R.A. Hutchinson, M.T. Aronson, J.R. Richards. Analysis of pulsed-laser-generated molecular weight distributions for the determination of propagation rate coefficients. Macromolecules, 26: 6410– 6415, 1993. CrossrefCASWeb of Science®Google Scholar D.T. Gillespie. A general method for numerically simulating the stochastic time evolution of coupled chemical reactions. J. Comput. Phys., 22: 403– 434, 1976. CrossrefCASWeb of Science®Google Scholar C. Schütte, M. Wulkow. A hybrid Galerkin-Monte-Carlo approach to higher-dimensional population balances in polymerization kinetics. Macromol. React. Eng., 4(9–10): 562– 577, 2010. Wiley Online LibraryCASWeb of Science®Google Scholar D. Eckes, M. Busch. Coupled deterministic and stochastic modeling of an industrial multi-zone LDPE autoclave reactor. Macromol. Symp., 360: 23– 31, 2016. Wiley Online LibraryCASWeb of Science®Google Scholar P.J. Flory. Principles of Polymer Chemistry. Cornell University Press, New York, 1953. Google Scholar P.B. Zetterlund, W.K. Busfield, I.D. Jenkins. Free radical polymerization of styrene: mass spectrometric identification of the first 15 nitroxide-trapped oligomers and estimated propagation rate coefficients. Macromolecules, 35: 7232– 7237, 2002. CrossrefCASWeb of Science®Google Scholar C. Barner-Kowollik, G.T. Russell. Chain-length-dependent termination in radical polymerization: subtle revolution in tackling a long-standing challenge. Prog. Polym. Sci., 34: 1211– 1259, 2009. CrossrefCASWeb of Science®Google Scholar R.G.W. Norrish, R.R. Smith. Catalyzed polymerization of methyl methacrylate in the liquid phase. Nature, 150: 336– 337, 1942. CrossrefCASWeb of Science®Google Scholar E. Trommsdorf, H. Kohle, P. Lagally. Zur Polymerisation des Methacrylsäuremethylesters. Makromol. Chem., 1: 169– 198, 1948. Wiley Online LibraryGoogle Scholar D. Achilias, C. Kiparissides. Modeling of diffusion-controlled free-radical polymerization reactions. J. Appl. Polym. Sci., 35: 1303– 1323, 1988. Wiley Online LibraryCASWeb of Science®Google Scholar S. Beuermann, M. Buback. Rate coefficients of free-radical polymerization deduced from pulsed laser experiments. Prog. Polym. Sci., 27: 191– 254, 2002. CrossrefCASWeb of Science®Google Scholar G. Moad, D.H. Solomon. The Chemistry of Radical Polymerization. Elsevier, Oxford, 2006. Google Scholar C. Spuehler. Kinetic studies and modeling of nylon-6 solid state polycondensation. PhD thesis, EPFL, 2000. Google Scholar E.A. Lissi, M. Moya. Influence of monomer activity coefficient upon polymerization rate. Eur. Polym. J., 16: 543– 545, 1980. CrossrefCASWeb of Science®Google Scholar F.T. Wall. The structure of copolymers. II. J. Am. Chem. Soc., 66: 2050– 2057, 1944. CrossrefCASPubMedWeb of Science®Google Scholar P. Deglmann, K.-D. Hungenberg, H.M. Vale. Dependence of propagation rate coefficients in radical polymerization on solution properties. Macromol. React. Eng., 11: 1600037, 2017. Wiley Online LibraryCASWeb of Science®Google Scholar D.D. Steppan, M.F. Doherty, M.F. Malone. A kinetic and equilibrium model for nylon 6,6 polymerization. J. Appl. Polym. Sci., 33: 2333– 2344, 1987. Wiley Online LibraryCASWeb of Science®Google Scholar S. Beuermann. Solvent influence on propagation kinetics in radical polymerizations studied by pulsed laser initiated polymerizations. Macromol. Rapid Commun., 30: 1066– 1088, 2009. Wiley Online LibraryCASPubMedWeb of Science®Google Scholar L.H. Peebles. Molecular Weight Distributions in Polymers. Interscience Publishers, New York, 1971. Google Scholar J.A. Semlyen. Ring-chain equilibria and the conformation of polymerchains. Adv. Polym. Sci., 21: 41– 75, 1976. CrossrefCASGoogle Scholar M. Szwarc. Living polymers and mechanisms of anionic polymerization. Adv. Polym. Sci., 49: 1– 175, 1983. CrossrefWeb of Science®Google Scholar M. Stickler. General experimental methods in polymerization. Comprehensive Polymer Science. The Synthesis, Characterization, Reactions & Applications of Polymers, volume 3, pp. 59– 63. Pergamon, Oxford, 1989. Google Scholar R.N. Young, R.P. Quirk, L.J. Fetters. Anionic polymerizations of non-polar monomers involving lithium. Adv. Polym. Sci., 56: 3– 90, 1984. Google Scholar L. Gold. Statistics of polymer molecular size distribution for an invariant number of propagating chains. J. Chem. Phys., 28: 91– 99, 1958. CrossrefCASWeb of Science®Google Scholar H. Sawada. Thermodynamics of Polymerization. Marecel Dekker, Inc., New York, 1976. Google Scholar A. Miyake, W.H. Stockmayer. Theoretical reaction kinetics of reversible living polymerization. Makromol. Chem., 88: 90– 116, 1965. Wiley Online LibraryCASWeb of Science®Google Scholar V.S. Nanda, S.C. Jain. A theoretical study of the size distribution in reversible anionic polymers. Eur. Polym. J., 6: 1517– 1519, 1970. CrossrefCASWeb of Science®Google Scholar S. Sarkar Das, J. Zhuang, A. Ploplis Andrews, S.C. Greer, C.M. Guttmann, W. Blair. Living poly(alpha-methylstyrene) near the polymerization line. VII. Molecular weight distribution in a good solvent. J. Chem. Phys., 111: 9406– 9417, 1999. Google Scholar R. Chiang, J.J. Hermans. Influence of catalyst depletion or deactivation on polymerization kinetics. II. Nonsteady-state polymerization. J. Polym. Sci., Part A-1: Polym. Chem., 4: 2843– 2856, 1966. Wiley Online LibraryCASWeb of Science®Google Scholar K.-D. Hungenberg, K. Knoll, L. Janko, F. Bandermann. Anionic polymerization of styrene at high temperatures. Dechema Monogr., 131: 387, 1995. Google Scholar N.A. Dotson, R. Galvan, R.L. Laurence, M. Tirrel. Polymerization Process Modeling. VCH Publishers, Inc., New York, 1996. Google Scholar S. Penczek, P. Kubisa, R. Szymanski. On the diagnostic criteria of the livingness of polymerizations. Makromol. Chem. Rapid Commun., 12: 77– 80, 1991. Wiley Online LibraryCASWeb of Science®Google Scholar E.J. Goethals, F. Du Prez. Carbocationic polymerizations. Prog. Polym. Sci., 32: 220– 246, 2007. CrossrefCASWeb of Science®Google Scholar P. Sigwalt, M. Moreau. Carbocationic polymerization: mechanisms and kinetics of propagation reactions. Prog. Polym. Sci., 31: 44– 120, 2006. CrossrefCASWeb of Science®Google Scholar K. Matyjaszewski, M.T.P. Davis, editors. Handbook of Radical Polymerization. Wiley Interscience, Hoboken, NJ, 2002. Wiley Online LibraryGoogle Scholar A. Goto, T. Fukuda. Kinetics of living radical polymerization. Prog. Polym. Sci., 29: 329– 385, 2004. CrossrefCASWeb of Science®Google Scholar E. Mastan, X. Li, S. Zhu. Modeling and theoretical development in controlled radical polymerization. Prog. Polym. Sci., 45: 71– 101, 2015. CrossrefCASWeb of Science®Google Scholar M. Bodenstein. Eine Theorie der photochemischen Reaktionsgeschwindigkeiten. Z. Phys. Chem., 85: 390– 421, 1913. CrossrefGoogle Scholar M. Stickler. Experimental techniques. Comprehensive Polymer Science. The Synthesis, Characterization, Reactions & Applications of Polymers, volume 3, pp. 85– 95. Pergamon, Oxford, 1989. Google Scholar H.M. Hulburt, S. Katz. Some problems in particle technology. Chem. Eng. Sci., 19: 555– 574, 1964. CrossrefCASWeb of Science®Google Scholar C. Hagiopol. Copolymerization. Kluwer Academic / Plenum Publishers, New York, 1999. Google Scholar F.T. Wall. The structure of vinyl copolymers. J. Am. Chem. Soc., 63: 1862– 1866, 1941. CrossrefCASWeb of Science®Google Scholar F.R. Mayo, F.M. Lewis. Copolymerization. I. A basis for comparing the behavior of monomers in copolymerization; the copolymerization of styrene and methyl methacrylate. J. Am. Chem. Soc., 66: 1594– 1601, 1944. CrossrefCASGoogle Scholar T. Alfrey Jr, G. Goldfinger. The mechanism of copolymerization. J. Chem. Phys., 12: 205– 210, 1944. CrossrefCASGoogle Scholar T. Fukuda, K. Kubo, Y.-D. Mae. Kinetics of free radical copolymerization. Prog. Polym. Sci., 17: 875– 916, 1992. CrossrefCASWeb of Science®Google Scholar M.N. Galbraith, G. Moad, D.H. Solomon, T.H. Spurling. Influences of the initiation and termination reactions on the molecular weight distribution and compositional heterogeneity of functional copolymers: an application of Monte Carlo simulation. Macromolecules, 20: 675– 679, 1987. CrossrefCASWeb of Science®Google Scholar P. Iedema, M. Wulkow, H. Hoefsloot. Modeling molecular weight and degree of branching distribution of low density polyethylene. Macromolecules, 33: 7173– 7184, 2000. CrossrefCASWeb of Science®Google Scholar R.A. Hutchinson. Modeling of chain length and long-chain branching distributions in free-radical polymerization. Macromol. Theory Simul., 10: 144– 157, 2001. Wiley Online LibraryCASWeb of Science®Google Scholar D. Li, N. Li, R.A. Hutchinson. High-temperature free radical copolymerization of styrene and butyl methacrylate with depropagation and penultimate kinetic effects. Macromolecules, 39: 4366– 4373, 2006. CrossrefCASWeb of Science®Google Scholar P.D. Iedema, S. Grcev, H.C.J. Hoefsloot. Molecular weight distribution modeling of radical polymerization in a CSTR with long chain branching through transfer to polymer and terminal double bond (TDB) propagation. Macromolecules, 36: 458– 476, 2003. CrossrefCASWeb of Science®Google Scholar M. Busch, K. Becker. Modeling the chain-length differentiated polymer microstructure of alpha-olefins. Macromol. Symp., 259: 295– 304, 2007. Wiley Online LibraryCASWeb of Science®Google Scholar P.D. Iedema, H.C.J. Hoefsloot. Conditional Monte Carlo sampling to find branching architectures of polymers from radical polymerizations with transfer to polymer. Macromolecules, 39(8): 3081– 3088, 2006. Google Scholar F. Teymour, J.D. Campbell. Analysis of the dynamics of gelation in polymerization reactors using the “numerical fractionation” technique. Macromolecules, 27(9): 2460– 2469, 1994. Google Scholar S. Lazzari, S. Hamzehlou, Y. Reyes, J.R. Leiza, M.R.P.F.N. Costa, R.C.S. Dias, G. Storti. Bulk crosslinking copolymerization: comparison of different modeling approaches. Macromol. React. Eng., 8: 678– 695, 2014. Wiley Online LibraryCASWeb of Science®Google Scholar K. Matyjaszewski, N.V. Tsarevsky. Macromolecular engineering by atom transfer radical polymerization. J. Am. Chem. Soc., 136: 6513– 6533, 2014. CrossrefCASPubMedWeb of Science®Google Scholar S. Lazzari, G. Storti. Modeling multiradicals in crosslinking MMA/EGDMA bulk copolymerization. Macromol. Theory Simul., 23: 15– 35, 2014. Wiley Online LibraryCASWeb of Science®Google Scholar M. Ali Parsa, I. Kozhan, M. Wulkow, R.A. Hutchinson. Modeling of functional group distribution in copolymerization: a comparison of deterministic and stochastic approaches. Macromol. Theory Simul., 23: 207– 217, 2014. Wiley Online LibraryCASWeb of Science®Google Scholar A. Butte, G. Storti, M. Morbidelli. Evaluation of the chain length distribution in free-radical polymerization, 2. Emulsion polymerization. Macromol. Theory Simul., 11(1): 37– 52, 2002. Wiley Online LibraryWeb of Science®Google Scholar M. Wulkow, J.R. Richards. Evaluation of the chain length distribution in free-radical emulsion polymerization–the compartmentalization problem. Ind. Eng. Chem. Res., 53: 7275– 7295, 2014. CrossrefCASWeb of Science®Google Scholar E. Neuhaus, T. Herrmann, I. Vittorias, D. Lilge, G. Mannebach, A. Gonioukh, M. Busch. Modeling the polymeric microstructure of LDPE in tubular and autoclave reactors with a coupled deterministic and stochastic simulation approach. Macromol. Theory Simul., 23: 593, 2014. Google Scholar Y. Yu, G. Storti, M. Morbidelli. Kinetics of ring-opening polymerization of l,l-lactide. Ind. Eng. Chem. Res., 50: 7927– 7940, 2011. CrossrefCASWeb of Science®Google Scholar M. Zlokarnik. Stirring. Wiley-VCH Verlag GmbH & Co. KGaA, 2000. Google Scholar P.V. Danckwerts. Continuous flow systems. Chem. Eng. Sci., 2: 1– 13, 1953. CrossrefCASWeb of Science®Google Scholar K.G. Denbigh, J.C.R. Turner. Chemical Reactor Theory: An Introduction. Cambridge University Press, Cambridge, 3rd edition, 1984. Google Scholar H.S. Fogler. Elements of Chemical Reaction Engineering. Prentice Hall of India, New Delhi, 3rd edition, 2004. Google Scholar K.C. Seavey, Y.A. Lu. Step-Growth Polymerization Process Modeling and Product Design. John Wiley & Sons, Inc., Hoboken, NJ, 2008. Wiley Online LibraryGoogle Scholar P.V. Danckwerts. The effect of incomplete mixing on homogeneous reactions. Chem. Eng. Sci., 8: 93– 102, 1958. CrossrefWeb of Science®Google Scholar T.N. Zwietering. The degree of mixing in continuous flow systems. Chem. Eng. Sci., 11: 1– 15, 1959. CrossrefCASWeb of Science®Google Scholar W. Pauer, H.-U. Moritz. Continuous reactor concepts with superimposed secondary flow - polymerization process intensification. Macromol. Sympos. (Polym. React. Eng. VI), 243: 299– 308, 2006. Wiley Online LibraryCASWeb of Science®Google Scholar B. Fu, H. Weinstein, B. Bernstein, A.B. Shaffer. Residence time distributions of recycle systems-integral equation formulation. Ind. Eng. Chem. Process Des. Dev., 10: 501– 508, 1971. CrossrefGoogle Scholar W.G. Whitmann. The two film theory of gas absorption. Chem. Metall. Eng., 29: 146– 148, 1923. Google Scholar P.J. Flory. Thermodynamics of high polymer solutions. J. Chem. Phys., 9: 660– 661, 1941. CrossrefCASWeb of Science®Google Scholar P.J. Flory. Thermodynamics of high polymer solutions. J. Chem. Phys., 10: 51– 61, 1942. CrossrefCASWeb of Science®Google Scholar M.L. Huggins. Solutions of long chain compounds. J. Chem. Phys., 9: 440– 440, 1941. CrossrefCASWeb of Science®Google Scholar M.A. van Dijk, A. Wakker. Concepts of Polymer Thermodynamics. Technomic Publishing Company, Inc., Lancaster, 1997. Google Scholar S. Enders, B.A. Wolf, editors Polymer Thermodynamics. Springer-Verlag, Berlin, 2011. Google Scholar K.E.J. Barrett, editor. Dispersion Polymerization in Organic Media. Wiley, New York, 1975. Google Scholar X.E.E. Reynhout, J. Meuldijk, B.A.H. Drinkenburg, P.D. Iedema, M. Wulkow. A novel method to model emulsion polymerization kinetics: the explicit radical-particle size distribution approach. Polym. Plast. Technol. Eng., 44: 707– 740, 2005. CrossrefCASWeb of Science®Google Scholar T. Meyer, J. Keurentjes, editors. Handbook of Polymer Reaction Engineering. Wiley-VCH Verlag GmbH, Weinheim, 2005. Wiley Online LibraryGoogle Scholar B. Elvers, S. Hawkins, G. Schultz, editors. Ullmanns Encyclopedia of Industrial Chemistry, volume A21. Wiley-VCH Verlag GmbH, Weinheim, 1992. Google Scholar B.W. Brooks. Basic aspects and recent developments in suspension polymerisation. Makromol. Chem. Macromol. Symp., 35/36: 121– 140, 1990. Wiley Online LibraryWeb of Science®Google Scholar H. Hopff, H. Luessi, R. Gerspacher. Zur Kenntnis der Perlpolymerisation. Makromol. Chem., 78: 24– 46, 1964. Wiley Online LibraryCASWeb of Science®Google Scholar E. Vivaldo-Lima, P.E. Wood, A.E. Hamielec. Calculation of the particle size distribution in suspension polymerization using a compartment-mixing model. Can. J. Chem. Eng., 76: 495– 505, 1998. Wiley Online LibraryCASWeb of Science®Google Scholar S.E. Nogueira, J.C. Pinto, A.S. Vianna. Analysis of energy dissipation in stirred suspension polymerization reactors using computational fluid dynamics. Can. J. Chem. Eng., 90: 983– 995, 2012. Wiley Online LibraryCASWeb of Science®Google Scholar A.H. Alexopoulos, D. Maggioris, C. Kiparissides. CFD analysis of turbulence non-homogeneity in mixing vessels: a two-compartment model. Chem. Eng. Sci., 57: 1735– 1752, 2002. CrossrefCASWeb of Science®Google Scholar P.A. Mueller, G. Storti, M. Morbidelli. Detailed modelling of MMA dispersion polymerization in supercritical carbon dioxide. Chem. Eng. Sci., 60: 1911– 1925, 2005. CrossrefCASWeb of Science®Google Scholar P.A. Mueller, G. Storti, M. Morbidelli, M. Apostolo, R. Martin. Modeling of vinylidene fluoride heterogeneous polymerization in supercritical carbon dioxide. Macromolecules, 38(16): 7150– 7163, 2005. Google Scholar W.V. Smith, R.H. Ewart. Kinetics of emulsion polymerization. J. Chem. Phys., 16(6): 592– 599, 1948. CrossrefCASPubMedWeb of Science®Google Scholar W.D. Harkins. A general theory of the mechanism of emulsion polymerization. J. Am. Chem. Soc., 69: 1428– 1444, 1947. CrossrefCASPubMedWeb of Science®Google Scholar N. Sheibat-Othman, H.M. Vale, J.M. Pohn, T.F.L. McKenna. Is modeling the PSD in emulsion polymerization a finished problem? An overview. Macromol. React. Eng., 2017. doi: 10.1002/mren.201600059. Wiley Online LibraryGoogle Scholar J.P. Ugelstad, P.C. Moerk, E.E. Aasen. Kinetics of emulsion polymerization. J. Polym. Sci., A-1(5): 2281– 2288, 1969. Google Scholar I. Piirma. Emulsion Polymerisation. Academic Press, New York, 1982. Google Scholar R.M. Fitch. Polymer Colloids: A Comprehensive Introduction. Academic Press, San Diego, CA, 1997. Google Scholar R.G. Gilbert. Emulsion Polymerization. A Mechanistic Approach. Academic Press, London, 1995. Google Scholar A.M. van Herk, editor. Chemistry and Technology of Emulsion Polymerization. Blackwell Publishing, Oxford, 2005. Wiley Online LibraryGoogle Scholar G. Lichti, R.G. Gilbert, D.H. Napper. Molecular weight distribution in emulsion polymerizations. J. Polym. Sci., Part A: Polym. Chem. Ed., 18: 1297– 1323, 1980. Wiley Online LibraryCASWeb of Science®Google Scholar G.T. Russel, R.G. Gilbert, D.H. Napper. Chain-length-dependent termination rate processes in free-radical polymerizations. I: Theory. Macromolecules, 25: 2459– 2469, 1992. CrossrefWeb of Science®Google Scholar P. Deuflhard, A. Hohmann. Numerical Analysis in Modern Scientific Computing: An Introduction. Springer-Verlag, New York, 2nd edition, 2003. Google Scholar P. Deuflhard, F. Bornemann. Scientific Computing with Ordinary Differential Equations, Texts in Applied Mathematics. Springer-Verlag, New York, 2002. CrossrefGoogle Scholar P. Deuflhard, M. Weiser. Adaptive Numerical Solution of PDEs, De Gruyter Textbook. De Gruyter, Berlin / Boston, MA, 2012. Google Scholar P. Deuflhard, S. Röblitz. A Guide to Numerical Modeling in Systems Biology, Texts in Computational Science and Engineering. Springer, Switzerland, 2015. Google Scholar E. Hairer, S.P. Norsett, G. Wanner. Solving Ordinary Differential Equations I: Nonstiff Problems, Springer Series in Computational Mathematics. Springer-Verlag, Berlin, Heidelberg, paperback edition, 2009. Google Scholar E. Hairer, G. Wanner. Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems, Springer Series in Computational Mathematics. Springer-Verlag, Berlin, Heidelberg, 2010. Google Scholar S. Kumar, D. Ramkrishna. On the solution of population balance equations by discretization–I. A fixed pivot technique. Chem. Eng. Sci., 51(8): 1311– 1332, 1996. CrossrefCASWeb of Science®Google Scholar S. Kumar, D. Ramkrishna. On the solution of population balance equations by discretization–II. A moving pivot technique. Chem. Eng. Sci., 51(8): 1333– 1342, 1996. CrossrefCASWeb of Science®Google Scholar A. Butte, G. Storti, M. Morbidelli. Evaluation of the chain length distribution in free-radical polymerization, 1. Bulk polymerization. Macromol. Theory Simul., 11(1): 22– 36, 2002. Wiley Online LibraryGoogle Scholar N. Yaghini, P.D. Iedema. Molecular weight/branching distribution modeling of lowdensity polyethylene accounting for topological scission and combination termination in continuous stirred tank reactor. Chem. Eng. Sci., 116: 144– 160., 2014. CrossrefGoogle Scholar H.S. Wilf. Generatingfunctionology. A K Peter / CRC Press, 3rd edition, 2005. CrossrefGoogle Scholar M.R.P.F.N. Costa, R.C.S. Dias. Kinetic modeling of non-linear polymerization. Macromolecular Symposia, 243(1): 72– 82, November 2006. Wiley Online LibraryCASWeb of Science®Google Scholar J.B.P. Soares. The use of instantaneous distributions in polymerization reaction engineering. Macromol. React. Eng., 8(4): 235– 259, 2014. Wiley Online LibraryCASWeb of Science®Google Scholar D.T. Gillespie. Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem., 81: 2340– 2361, 1977. CrossrefCASWeb of Science®Google Scholar H. Tobita. Kinetics of long-chain branching via chain transfer to polymer: II. New theory to predict molecular weight distribution. Polym. React. Eng., 3: 379– 405, 1993. CrossrefGoogle Scholar J.B.P. Soares, A.E. Hamielec. Chain length distributions of polyolefins made with coordination catalysts at very short polymerization times–analytical solution and Monte Carlo simulation. Macromol. React. Eng., 1: 53– 67, 2007. Wiley Online LibraryCASWeb of Science®Google Scholar A.L.T. Brandao, J.B.P. Soares, J.C. Pinto, Al L. Alberton. When Polymer Reaction Engineers Play Dice: Applications of Monte Carlo Models in PRE. Macromol. React. Eng., 9: 141– 185, 2015. Wiley Online LibraryCASWeb of Science®Google Scholar P.H.M. Van Steenberge, D.R. D'hooge, Y. Wang, M. Zhong, M.F. Reyniers, D. Konkolewicz, K. Matyjaszewski, G.B. Marin. Linear gradient quality of ATRP copolymers. Macromolecules, 45: 8519– 8531, 2012. CrossrefCASWeb of Science®Google Scholar P.D. Iedema, M. Dreischor, K.-D. Hungenberg, Y. Orlov. Predicting the change of MWD caused by interchange reactions during melt-mixing of linear and branched polycondensates (AB2). Macromol. Theory Simul., 21: 629– 647, 2012. Wiley Online LibraryCASWeb of Science®Google Scholar T. Tongtummachat, S. Anantawaraskul, J.B.P. Soares. Understanding the formation of linear olefin block copolymers with dynamic Monte Carlo simulation. Macromol. React. Eng., 10: 535– 550, 2016. Wiley Online LibraryCASWeb of Science®Google Scholar D.D. Oezcam, F. Teymour. Chain-by-chain Monte Carlo simulation: a novel hybrid method for modeling polymerization. Part I. Linear controlled radical polymerization systems. Macromol. React. Eng., 11(1): 1600042, 2017. Google Scholar D. Meimaroglou, P. Pladis, C. Kiparissides. Dynamic Monte Carlo simulation of the l,l-lactide ring-opening polymerization. Macromol. React. Eng., 11(1): 1600039, 2017. Wiley Online LibraryCASWeb of Science®Google Scholar C. Schütte. Robust Modeling in Process Optimization. Lecture held at Zuse Institute Berlin, 2016. Google Scholar M. Hansen, C. Schillings, C. Schwab. Sparse approximation algorithms for high dimensional parametric initial value problems. In Proceedings of the 5th International Conference on High Performance Scientific Computing 2012, 2012. Google Scholar C. Schillings, C. Schwab. Sparse, adaptive Smolyak quadratures for Bayesian inverse problems. Inverse Prob., 29(6): 065011, 2013. CrossrefGoogle Scholar G.H. Golub, C.F. Van Loan. Matrix Computations. Johns Hopkins University Press, 4th edition, 2012. Google Scholar P. Deuflhard. Newton Methods For Nonlinear Problems: Affine Invariance and Adaptive Algorithms. Springer-Verlag, Berlin, Heidelberg, 2nd edition, 2011. CrossrefGoogle Scholar R. Telgmann. Computer-aided modeling. PhD thesis, FU Berlin, 2008. Google Scholar V.V. Fedorov, P. Hackl. Model-Oriented Design of Experiments, Springer Science & Business Media. Springer-Verlag, New York, 2012. Google Scholar I. Bauer, H.G. Bock, S. Körkel, J.P. Schlöder. Numerical methods for optimum experimental design in DAE systems. J. Comput. Appl. Math., 120(1): 1– 25, 2000. CrossrefWeb of Science®Google Scholar L. Janko. Über die anionische Copolymerisation von Styrol und 1,-3-Butadien in unpolaren Lösungsmitteln. PhD thesis, University Essen, 1997. Google Scholar H.J. Hsieh, R.P. Quirk. Anionic Polymerization. Marcel Dekker Inc., New York, 1996. CrossrefGoogle Scholar BASF Aktiengesellschaft. Transparent mixtures of linear styrene-butadiene block copolymers. Inventor: K. Knoll, D. Wagner, J. Koch, P. Merkel. 15. Juni 2006. US20060128890 A1, 2006. Google Scholar Modeling and Simulation in Polymer Reaction Engineering: A Modular Approach ReferencesRelatedInformation" @default.
- W4211058598 created "2022-02-13" @default.
- W4211058598 date "2018-04-16" @default.
- W4211058598 modified "2023-09-23" @default.
- W4211058598 title "References" @default.
- W4211058598 cites W1148818821 @default.
- W4211058598 cites W121232905 @default.
- W4211058598 cites W1234489726 @default.
- W4211058598 cites W1503264709 @default.
- W4211058598 cites W1530638561 @default.
- W4211058598 cites W1540027411 @default.
- W4211058598 cites W1588442867 @default.
- W4211058598 cites W1593833610 @default.
- W4211058598 cites W1960728136 @default.
- W4211058598 cites W1965006117 @default.
- W4211058598 cites W1969014225 @default.
- W4211058598 cites W1969816665 @default.
- W4211058598 cites W1971024861 @default.
- W4211058598 cites W1978520016 @default.
- W4211058598 cites W1978723774 @default.
- W4211058598 cites W1982944750 @default.
- W4211058598 cites W1983519688 @default.
- W4211058598 cites W1991650304 @default.
- W4211058598 cites W1992338910 @default.
- W4211058598 cites W1994376267 @default.
- W4211058598 cites W2001525154 @default.
- W4211058598 cites W2004524976 @default.
- W4211058598 cites W2006080309 @default.
- W4211058598 cites W2007252855 @default.
- W4211058598 cites W2008957038 @default.
- W4211058598 cites W2010073148 @default.
- W4211058598 cites W2011381315 @default.
- W4211058598 cites W2026643696 @default.
- W4211058598 cites W2029429751 @default.
- W4211058598 cites W2030727924 @default.
- W4211058598 cites W2030970235 @default.
- W4211058598 cites W2033229394 @default.
- W4211058598 cites W2036603232 @default.
- W4211058598 cites W2039878420 @default.
- W4211058598 cites W2041166521 @default.
- W4211058598 cites W2041278780 @default.
- W4211058598 cites W2041424097 @default.
- W4211058598 cites W2042321087 @default.
- W4211058598 cites W2044978915 @default.
- W4211058598 cites W2048896155 @default.
- W4211058598 cites W2049865983 @default.
- W4211058598 cites W2054530620 @default.
- W4211058598 cites W2055445566 @default.
- W4211058598 cites W2055621283 @default.
- W4211058598 cites W2059023091 @default.
- W4211058598 cites W2059253518 @default.
- W4211058598 cites W2060571716 @default.
- W4211058598 cites W2067631503 @default.
- W4211058598 cites W2070403559 @default.
- W4211058598 cites W2070468330 @default.
- W4211058598 cites W2070767579 @default.
- W4211058598 cites W2072492834 @default.
- W4211058598 cites W2075032974 @default.
- W4211058598 cites W2076296683 @default.
- W4211058598 cites W2084943916 @default.
- W4211058598 cites W2086696204 @default.
- W4211058598 cites W2092030716 @default.
- W4211058598 cites W2098659996 @default.
- W4211058598 cites W2100663659 @default.
- W4211058598 cites W2101294371 @default.
- W4211058598 cites W2114057721 @default.
- W4211058598 cites W2122258561 @default.
- W4211058598 cites W2127638194 @default.
- W4211058598 cites W2133477020 @default.
- W4211058598 cites W2133843658 @default.
- W4211058598 cites W2143107031 @default.
- W4211058598 cites W2143696487 @default.
- W4211058598 cites W2144874661 @default.
- W4211058598 cites W2153481430 @default.
- W4211058598 cites W2155418451 @default.
- W4211058598 cites W2159814401 @default.
- W4211058598 cites W2166295771 @default.
- W4211058598 cites W2173246417 @default.
- W4211058598 cites W2189977106 @default.
- W4211058598 cites W2274223255 @default.
- W4211058598 cites W2316579812 @default.
- W4211058598 cites W2324818055 @default.
- W4211058598 cites W2325784639 @default.
- W4211058598 cites W2326930271 @default.
- W4211058598 cites W2328127573 @default.
- W4211058598 cites W2334867992 @default.
- W4211058598 cites W2414224177 @default.
- W4211058598 cites W2479086650 @default.
- W4211058598 cites W2495349325 @default.
- W4211058598 cites W2518159149 @default.
- W4211058598 cites W2529707306 @default.
- W4211058598 cites W2555600273 @default.
- W4211058598 cites W2594893706 @default.
- W4211058598 cites W4211085114 @default.
- W4211058598 cites W4239283018 @default.
- W4211058598 cites W4242256239 @default.
- W4211058598 cites W4247272913 @default.
- W4211058598 cites W4247677606 @default.